

Special Seminar on Biodiversity Conservation & Museum Management

"Evolution and Speciation Without Sex in Bdelloid Rotifers"

Dr. Diego Fontaneto

National Research Council. Water Research Institute (CNR-IRSA), Italy

Moderators

Assoc. Prof. Dr. Supiyanit Maiphae

21 February 2022 15.30-17.30 (GMT+7)

Meeting ID: 912 9484 2644

Passcode : 991309

ZOOM

...only two sexes?

gametes

Gametes: what are they?

eukaryotic sex = meiosis

eukaryotic sex = meiosis

meiosis followed by the fusion of meiotic products

Sex: how does it work?

eukaryotic sex = meiosis + fertilisation

Sex => variability

Sex: consequences

Reproductive isolation promotes speciation

Biological Concept of Species:

"organisms are classified in the same species if they are potentially capable of **interbreeding** and producing fertile offspring"

Sex is important to originate and maintain diversity

Speciation

--- highly controversial issue in evolutionary biology ---

Coyne & Orr, 2004. Speciation. Sinauer Associates, 545 pp.

reproductive isolation

with

interruption of gene flow between populations

Are there 'species' in parthenogenetic/asexual animals?

Bdelloid rotifers: MEIOFAUNA

- Obligate parthenogenesis

- ca. 450 recognised morphological species

EVOLUTIONARY SCANDAL

Three alternative hypotheses

- 1- Bdelloid rotifers have 'hidden' males
- 2- Bdelloid rotifers do not have species
- 3- Sex is not so important

- no males ever seen

(Shurko et al. 2009: Trends Ecol Evol)

- no males ever seen
- accumulation of deleterious mutations
- transposable elements
- etc.

Figure 2 | A locally tetraploid genome.

b, Example of a genomic quartet of four scaffolds: allelic gene pairs are connected with violet curves and ohnologous gene pairs with orange curves.

Three alternative hypotheses

- 1- Bdelloid rotifers have 'hidden' males -- NO
- 2- Bdelloid rotifers do not have species
- 3- Sex is not so important

Bdelloid rotifers speciation

ca. 450 species from morphology

Are they real,

or figments of taxonomists' imagination?

Evidence of speciation: asexuals

H0: Entire group is a single species

swarm of clones

H1: Group has diversified into independently evolving sub-lineages

geographic isolation or divergent selection

Evidence of speciation

Genus Rotaria

several individuals from 9 species

from Europe, N. America, Africa, Australia

COI mtDNA and 28S rDNA

Geometric morphometrics of feeding morphology

Evidence of speciation

Species are monophyletic on DNA trees

Evidence of speciation

Species form

macr

tard

nept

sord

soci

noid

magn

+ rota

Hypotheses for bdelloid diversity

Clades within a single species? swarm of clones

Compare likelihood of H0 and H1 => H1 is higher

Hypotheses for bdelloid diversity

H0: Entire clade is a single species

H1: Clade has diversified into independently evolving lineages

H1a: <u>divergent selection</u> and ecologically distinct species?

H1b: complete or partial geographic isolation?

H1a: Divergent ecology

(Fontaneto et al. 2009: Mol Phyl Evol)

H1a: Divergent ecology

H1a: Divergent ecology

H1a: Divergent selection

Trait 2

Trait 1

Trait 1

H1a: Divergent selection

H1b: Geographic isolation

(i) species, (ii) lineages and (iii) clusters

significant correlation between genetic and geographic distances

Evidence of speciation in asexuals

Bdelloid rotifers
have diversified into independently evolving
entities akin to species in sexual organisms

through

divergent selection and geographic isolation

Three alternative hypotheses

- 1- Bdelloid rotifers have 'hidden' males -- NO
- 2- Bdelloid rotifers do not have species -- NO
- 3- Sex is not so important

Theory of speciation: sexuals

1. Geographic isolation:

genetic divergence + reproductive isolation (RI)

2. Divergent selection:

selection drives divergence + origin of RI

Theory of speciation: sexuals

1. Geographic isolation:

genetic divergence + reproductive isolation (RI)

2. Divergent selection:

selection drives divergence + origin of RI

SEXUAL REPRODUCTION & SPECIATION

Evidence of speciation in asexuals

Actually: a lot of diversification! Cryptic species

Abrochtha meselsoni/kingi	2
Adineta gracilis	4
Adineta steineri	2
Adineta vaga	>30
Macrotrachela ehrenbergii	2
Macrotrachela latior	4
Macrotrachela quadricornifera	>20
Philodina acuticornis	2
Philodina citrina	8
Philodina flaviceps	9
Philodina plena	7
Philodina roseola	2
Pleuretra lineata	5
Rotaria macrura	2
Rotaria magnacalcarata	2
Rotaria rotatoria	>70
Rotaria sordida	>10
Rotaria tardigrada	5

. . .

Evidence of speciation in asexuals

Actually: a lot of diversification! Cryptic species Sexual monogonont rotifer species

Abrochtha meselsoni/kingi Adineta gracilis Adineta steineri Adineta vaga Macrotrachela ehrenbergii Macrotrachela latior Macrotrachela quadricornifera Philodina acuticornis Philodina citrina Philodina flaviceps Philodina plena Philodina roseola Pleuretra lineata Rotaria macrura Rotaria magnacalcarata Rotaria rotatoria Rotaria sordida Rotaria tardigrada

Ascomorpha ovalis Brachionus calyciflorus Brachionus falcatus Brachionus plicatilis Brachionus urceolaris Epiphanes senta Kellicottia longispina Keratella cochlearis Keratella quadrata Lecane bulla Lecane cornuta Polyarthra dolichoptera Polyarthra vulgaris Synchaeta pectinata Synchaeta obtusa Synchaeta vulgaris Testudinella clypeata Testudinella patina

·· (Fontaneto 2014: Int Rev Hydr)

Cryptic species

Small microscopic animals Almost no morphological features

Meiofauna

12,000 individuals sequenced

55 taxa

8 phyla

COI vs 18S

Lineage-Through-Time plots and gamma statistics

Three alternative hypotheses

- 1- Bdelloid rotifers have 'hidden' males -- NO
- 2- Bdelloid rotifers do not have species -- NO
- 3- Sex is not so important -- HINDRANCE

Bdelloid rotifers: other peculiaritiesAble to survive desiccation and freezing

active

desiccated

Bdelloid rotifers: other peculiaritiesAble to survive desiccation and freezing

Bdelloid rotifers: other peculiarities

DNA repair mechanisms

desiccated

in water

active

Bdelloid rotifers: other peculiarities 'foreign' DNA

BUT: Horizontal Gene Transfer...

In bdelloids 8-10% of the genome not of Metazoa

More common during desiccation...

Can HGT happen between species?

Interspecific gene transfer

Can HGT happen between species?

Can HGT happen within species?

Intraspecific allele sharing

Can HGT happen within species?

Intraspecific allele sharing

Nu1054 marker

Can HGT happen within species?

Intraspecific allele sharing

EPIC25 marker

Three alternative hypotheses

- 1- Bdelloid rotifers have 'hidden' males -- NO
- 2- Bdelloid rotifers do not have species -- NO
- 3- Sex is not so important -- IT DEPENDS...

...alternative ways of sex!

- 1- Genome -> evidence of asexuality
- 2- Desiccation -> more HGT
- 3- Population genetics -> HGT within species

ARTICLE

https://doi.org/10.1038/s41467-020-19614-y

OPEN

Genomic signatures of recombination in a natural population of the bdelloid rotifer Adineta vaga

Olga A. Vakhrusheva

, Elena A. Mnatsakanova², Yan R. Galimov

, Tatiana V. Neretina^{4,5,6}, Evgeny S. Gerasimov^{4,5,7}, Sergey A. Naumenko^{5,8}, Svetlana G. Ozerova^{3,13}, Arthur O. Zalevsky

, Irina A. Yushenova

, Hernando Rodriguez

, Irina R. Arkhipova

, Aleksey A. Penin⁵, Maria D. Logacheva^{1,5,6}, Georgii A. Bazykin

, Alexey S. Kondrashov^{6,12}

1- Genome -> evidence of asexuality

2- Desiccation -> more HGT

NO

NO

RESEARCH ARTICLE

Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species

Reuben W. Nowell^{1*}, Pedro Almeida^{1¤a}, Christopher G. Wilson¹, Thomas P. Smith¹, Diego Fontaneto², Alastair Crisp^{3¤b}, Gos Micklem⁴, Alan Tunnacliffe³, Chiara Boschetti^{3,5©}*, Timothy G. Barraclough^{1©}*

1- Genome -> evidence of asexuality

2- Desiccation -> more HGT

NO

NO

3- Population genetics -> HGT within species NO

Cross-Contamination Explains "Inter and Intraspecific Horizontal Genetic Transfers" between Asexual Bdelloid Rotifers

Christopher G. Wilson, 1,2,* Reuben W. Nowell, 1 and Timothy G. Barraclough 1

ARTICLE

https://doi.org/10.1038/s41467-020-19614-y

OPEN

Genomic signatures of recombination in a natural population of the bdelloid rotifer Adineta vaga

Olga A. Vakhrusheva

, Elena A. Mnatsakanova², Yan R. Galimov

, Tatiana V. Neretina^{4,5,6}, Evgeny S. Gerasimov^{4,5,7}, Sergey A. Naumenko^{5,8}, Svetlana G. Ozerova^{3,13}, Arthur O. Zalevsky

, Irina A. Yushenova

, Fernando Rodriguez

, Irina R. Arkhipova

, Aleksey A. Penin⁵, Maria D. Logacheva^{1,5,6}, Georgii A. Bazykin

, Alexey S. Kondrashov^{6,12}

GENETICS

Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer *Adineta vaga*

Paul Simion¹*[†], Jitendra Narayan^{1†}, Antoine Houtain¹, Alessandro Derzelle¹, Lyam Baudry^{2,3}, Emilien Nicolas^{1,4}, Rohan Arora^{1,4}, Marie Cariou^{1,5}, Corinne Cruaud⁶, Florence Rodriguez Gaudray⁷, Clément Gilbert⁸, Nadège Guiglielmoni⁷, Boris Hespeels¹, Djampa K. L. Kozlowski⁹, Karine Labadie⁶, Antoine Limasset¹⁰, Marc Llirós^{1,11}, Martial Marbouty², Matthieu Terwagne¹, Julie Virgo¹, Richard Cordaux¹², Etienne G. J. Danchin⁹, Bernard Hallet¹³, Romain Koszul², Thomas Lenormand¹⁴, Jean-Francois Flot^{7,15}*, Karine Van Doninck^{1,4}*

CORRECTED PROOF

Genomic signature of sexual reproduction in the bdelloid rotifer Macrotrachella quadricornifera

Veronika N Laine, Timothy B Sackton, Matthew Meselson

Genetics, iyab221, https://doi.org/10.1093/genetics/iyab221

Published: 09 December 2021 Article history ▼

Evolution and speciation without sex in bdelloid rotifers?

Diego Fontaneto

National Research Council Water Research Institute Largo Tonolli 50 28922 Verbania Pallanza

diego.fontaneto@cnr.it