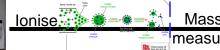


Mass Spectrometry

Flow	Introd ⁿ →	Ionise	Mass M'ment	Det / Record
Options	Options	Options	Options	Few Options
Gas Liquid Supercrit fluid	Infusion GC-MS HPLC-MS SFE-MS etc. ICP-MS MALDI-MS TGA-MS Headspace Ambient e.g. DESI-MS DART-MS PTR-MS SIFT-MS	EI CI Cold-EI FI FD APCI APPI REMPI	LRMS HR(FT)MS (AccMS) QMS TOFMS (LR/HR) Mag sector IRMS Orbitrap Fast MS Ion mobility MS/MS	Electron multiplier Multichannel plate Faraday cup



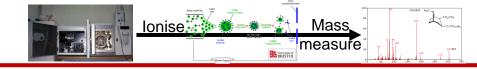
Background to Mass Spectrometry

- Briefly discuss the development of mass spectrometry... and some ionisation methods & mass analyser types
- Identify different uses and roles of mass spectrometry, focus on separation MS; hyphenated instrumentation
- Interpret a typical analysis protocol for GC-MS ~ kerosene & an organic mix
- Identify several important MS techniques and interpretations MS/MS; derivatisation; internal standards; library searching
- Discuss the role of MS in analytical chemistry ~ case studies
- Fast GC-MS

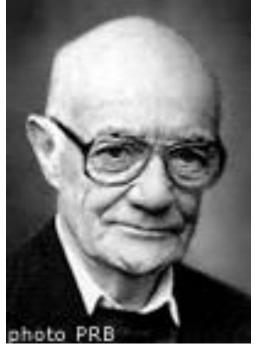
Orbitrap Exploris GC-MS

Mass Range m/z 30 to 3000 40 Hz scan @ 7,500 (m/z 200) External calib < 3 ppm; Internal < 1 ppm Resolution up to 30,000 at m/z 200

Development of MS – small footprint; Miniaturisation



R. Graham Cooks
Purdue Uni


Torion 'person portable GC-MS'. PerkinElmer. Milton Lee (BYU, Utah) (Here @ Botanic Garden Cranbourne)

Nobel Prizes for (Analytical) Chemistry: 2002


Fenn

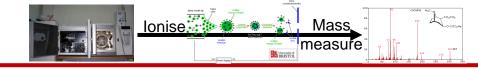
Tanaka

2002 Nobel Prizes for MS

John Fenn Research Professor of Ar

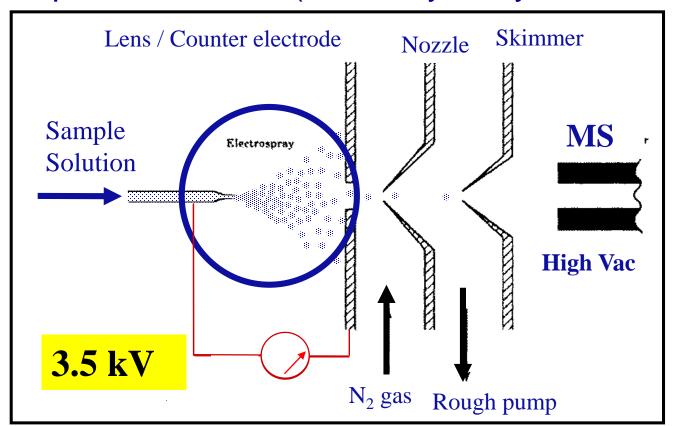
Research Professor of Analytical Chemistry

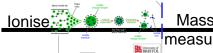
... for his work in MS, specifically electrospray ionization used to identify and analyze biological macromolecules.


Koichi Tanaka Shimadzu Corp

... soft desorption ionisation for MS analyses of biological

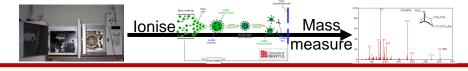
macromolecules. Only person without post-bachelor's degree to have won a Nobel Prize in a scientific field.

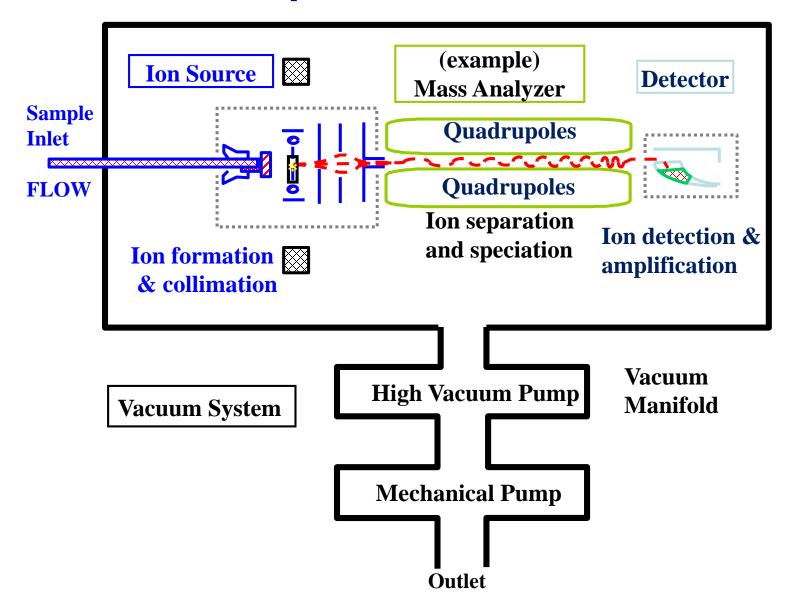

@ Yale then Virginia Commonwealth University; (see Wikipedia update) Fenn's research into electrospray ionization found him at the center of a legal dispute with Yale University. He lost the law suit, - he misled the university about the potential usefulness of ESI. Yale awarded \$500,000 in legal fees & \$545,000 in damages. The decision .. provoked mixed responses from some at the institution; disappointed with the treatment of a Nobel Prize winner with such a long history at the school.


Electrospray Ion (ESI) Formation

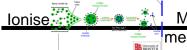
for liquid phase introduction – e.g. HPLC to access MS info

Form charged droplets - Apply large potential gradient to create spray of fine charged droplets 'single ion in droplet' from the tip of the needle (electrohydrodynamic flow)

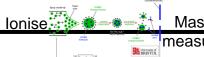



000aine HyG-N COy6

Characteristics of ESI


- Ionisation in a solution phase charge exchange process e.g. H⁺ addition or loss, H⁻ addition
- Little, or <u>no</u> fragmentation
- Often multiple transfer of charge (large molecules)
- Cationisation, capture of metal ions and other cations (e.g. NH₄+) is common— e.g. Na+ is ubiquitous
- Formation of ionic clusters is frequently observed
- Solvent moderately polar; electric field forms charged drops.
- Solvent must be sufficiently volatile; add formate and trifluoroacetate / acids if needed; not phosphates
- Samples should not be too strongly solvated.
- Avoid systems with strong clustering or where aggregation is promoted.

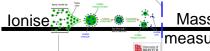
Mass Spectrometer Hardware



Ion Source **Mechanisms of Sample Ionisation**

- Protonation: M + H⁺ → IVITI
 Cationisation: M + Cat⁺ → MCat⁺ Societion Societion
- Electron Ejection: $M \rightarrow M^{+} + e^{-}$
- Electron Capture: $M + e^- \rightarrow M^-$

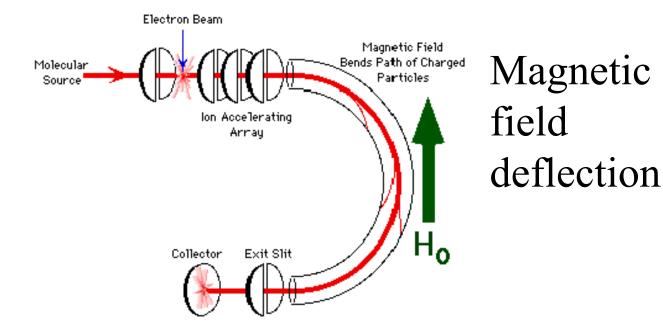
Typical ionisation mechanisms leading to ion formation. Others can occur e.g. photoionization (REMPI); normally one mechanism arises depending on the ion source process

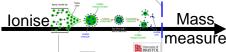

Named Methods of Sample Ionisation

•	Electron (Not Electron Impact!) Ionisation (EI)	H
•	Chemical Ionisation (CI)	S
•	Atmospheric Pressure Chemical Ionisation (APCI)	S
•	Electrospray Ionisation (ESI)	S
•	Fast Atom Bombardment (FAB)	H
•	Field Desorption / Field Ionisation (FD/FI)	\mathbf{S}
•	Matrix Assisted Laser Desorption Ionisation (MALDI)	\mathbf{S}
•	Thermospray Ionisation (TSP)	S

S: SOFT; H: HARD

Depends on the energy imparted to molecule during ionisation, and tendency towards fragmentation



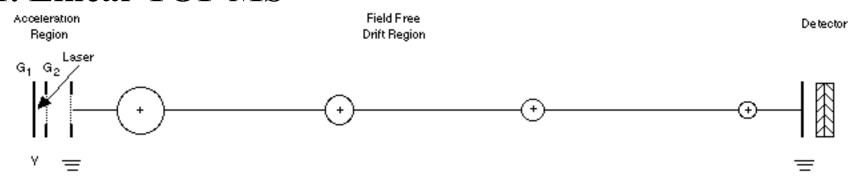

Analysers

Electric Fields vs Magnetic Fields

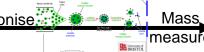
- Magnetic field deflection
- Time-of-flight (TOFMS)
- RF fields (i.e. quadrupoles); Ion Trap

Analysers

2. Reflectron

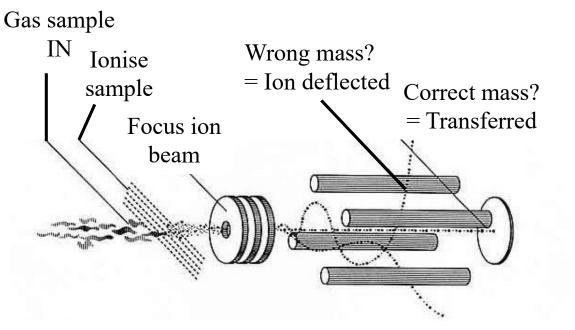

Electric Fields vs Magnetic Fields

- Magnetic deflection
- Time-of-flight (TOFMS)
- RF fields (i.e. quadrupoles); Ion Trap


Pulsed 'Push' plate

1. Linear TOF MS

Time-of flight (TOFMS)



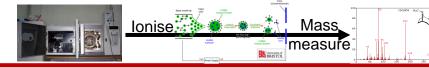
Analysers

Electric Fields vs Magnetic Fields

- Magnetic deflection
- Time-of-flight (TOFMS)
- RF fields (i.e. quadrupoles); Ion Trap

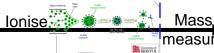
Quadrupole

Mass Spectrometer qMS (single quad; triple quad)


Quadrupole mass filter

Chromatography-MS ("Hyphenated") Techniques

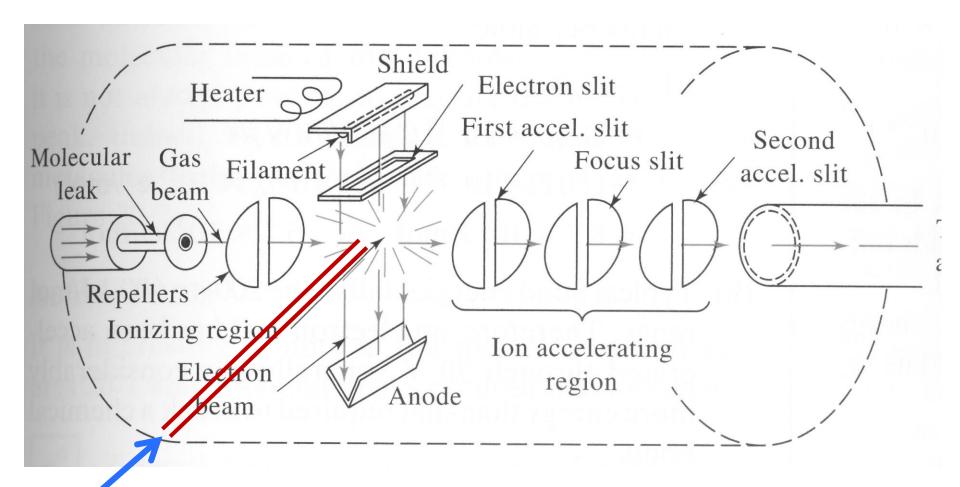
- Chromatographic methods coupled directly to MS instruments
- Ideal for impure mixtures multicomponent samples
- The current popularity of MS is largely due to GC and LC methods "MS for the Masses"



Electron Ionisation (EI); Supersonic Beam EI (Cold EI); Chemical Ionisation (CI) &

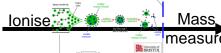
Learning Objectives;

- > Understand the mechanism of EI, CI, ESI
- Discuss some factors involved in identifying a molecular ion
- > Understand the mechanisms of chemical ionisation.


Mass Spectrometry

What information do we get from a mass spectrum?

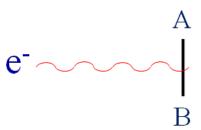
- 1. The Molar Mass The single most important piece of information; allows us to narrow the list of possible compounds down considerably.
- 2. The Functional Groups What groups of atoms are present in our compound? What is attached to what? *Fragment ions* and *neutral losses* inferred from the mass spectrum tell us what our molecule consists of.
- 3. The Chemical Nature of the Molecule Each peak in the mass spectrum has a characteristic intensity. This gives an indication of how easy it is to form a particular fragment, or how stable the fragment ion is.

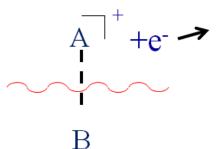


Electron Ionisation EI-MS

or inlet here Skoog; Figure 20-3

- 1. Electrons are emitted (thermionic emission) from a heated filament (wire; usually tungsten/rhenium); accelerated by applying ~70 eV between the filament and the 'trap electrode'. (WHY 70 eV?? If < 70 eV?)
- 2. Can use lower eV − gives less fragmentⁿ; 'Select eV' @ ~ 14 eV is used by the company "Markes" with GC.
- 3. The path of the molecules (left-to-right above) is at right angles to the electron beam. Ionisation occurs here; some collisions can also arise.
- 4. "ion-optics" focus the ion beam; an acceleration potential accelerates the ions into the mass analyser


Analytical Mass Spectrometry

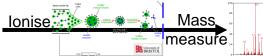


- 1. Molecule vaporises
- 2. Energetic electrons: energy transferred to M (e.g. to A-B bond) $M + e^- \rightarrow M^+ + e^- + e^-$
- 3. Molecular ion undergoes fragmentation > secondary ions $M^+ \rightarrow S^+ + N$ (secondary ion + neutral)
- 4. Charged ions separated; based on m/z:
 e.g. m/z=18 could be $[H_2O]^+$ m/z=46 $[CH_3CH_2OH]^+$ or $[NO_2]^+$ etc.

$$A^{+\bullet} + B$$

S 100 0000000 HyCup COCCHA

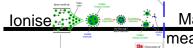
Identifying the parent ion; M⁺


- 1. It must be the ion of highest mass in the spectrum. (But remember isotopes and the possibility of a contaminant being present.)
- 2. The parent ion must be an *odd electron* ion:

eg.
$$H: C: H \longrightarrow H: C: H$$
 ie. CH_4^+

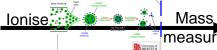
3. The parent ion must be capable of yielding the important ions in the high mass region of the spectrum by loss of logical neutral species.

$$CH_3 \stackrel{?}{\longrightarrow} CH_2 \stackrel{?}{\longrightarrow} OH$$
 $M.M. = 46$



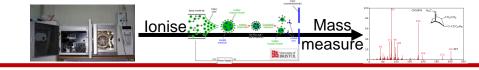
Which peak is the molecular ion, M⁺??

- 1. It is the peak with the highest mass (BUT)
- 2. It is the peak from the most abundant isotopes of the combining atoms (BUT)
- 3. All the fragment ions should arise from the molecular ion
- 4. It is not always present ...



Isotope Patterns in MS

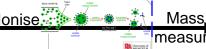
- Most commonly (but not exclusively), mass spectrometry is used to study organic compounds consisting of combinations of C, H, O, N, S, P, F, Cl, Br, I and Si
- From this list, all except P, F and I possess stable isotopes in adequate abundance to appear in mass spectra.
- The presence of isotopes makes it possible to calculate elemental compositions for many peaks in a mass spectrum.
- Especially useful in ACCURATE MASS MS analysis



100 COURTS HyC-N

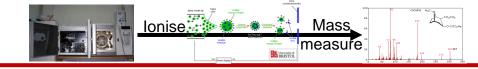
Cold El

- Developed by Aviv Amirav, Tel Aviv University
- Commercialised by PerkinElmer the GC-iQT system in PE Lab, Lvl 2. It still uses EI, BUT …
- supersonic molecular beam <u>cools the analyte</u> so with El and an elevated gas flow, the vibrationally cold <u>molecular ion</u> increases in intensity. Especially for saturated compounds – GOOD! Since these have poor El M+⁻.
- Useful for GC since saturates are usually analysed by GC
- BUT spectra are different from usual EI spectra so can affect library match & searching...

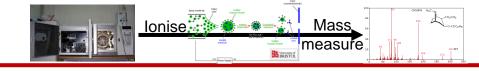

http://www.avivanalytical.com/Supersonic-GC-MS.aspx

Chemical Ionisation

- CI ion source very similar to EI. But it may allow higher pressure of reagent gas...
- Principal difference Use of reagent gas (typically ammonia, methane or isobutane).
- Electrons (filament) ionise the CI gas, which then ionises the sample.
- Sample is introduced from a reservoir or heated probe, or as the eluent from a gas chromatograph (GC).



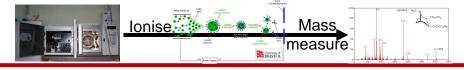
Chemical Ionisation (CI)


```
Positive Ion Mode (PCI)
                                              Transfer of a 'group'
     GH^+ + M \rightarrow G + MH^+
                                              to M
     (GH<sup>+</sup> = protonated reagent gas)
     G-H^+ + M \rightarrow G + M-H^+
     (G-H<sup>+</sup> = reagent gas with loss of H<sup>-</sup>)
```

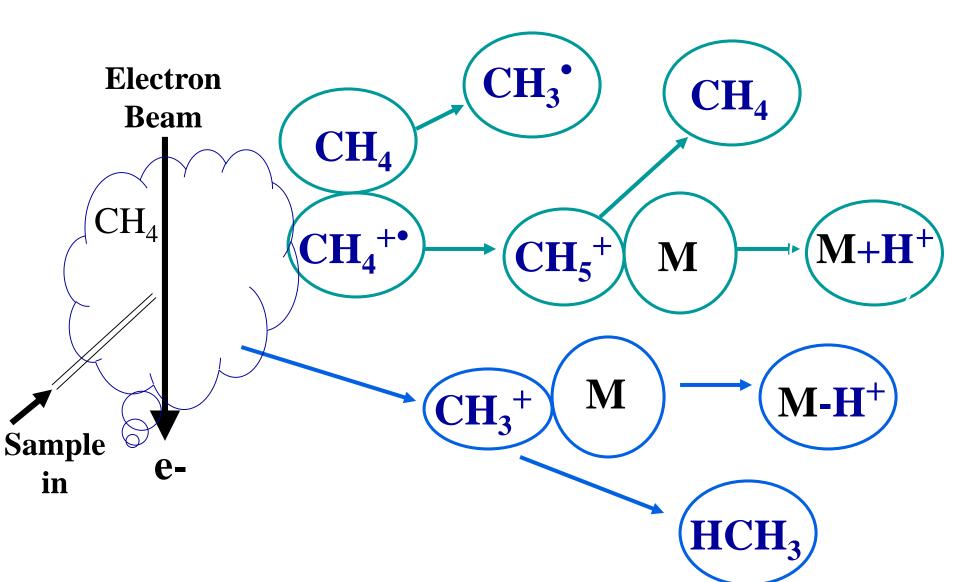
- Negative Ion Mode (NCI) Transfer of a 'group' from M $G-H^- + M \rightarrow G + M-H^-$
 - $(G-H^- = deprotonated reagent gas)$
- MH+ and M-H- are "pseudo-molecular ions"
- So the mechanism of ion formation is very different to EI!

Chemical Ionisation (CI)

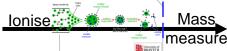
- Reduced Fragmentation
- Sometimes EI yields no molecular ion at all, EVEN with reduced e- energy, i.e. < 70 eV
- CI can be mild enough to give very little fragmentation JUST pseudo Molec ion.
- Molecular Mass information
- Increased Sensitivity
- Increased Selectivity



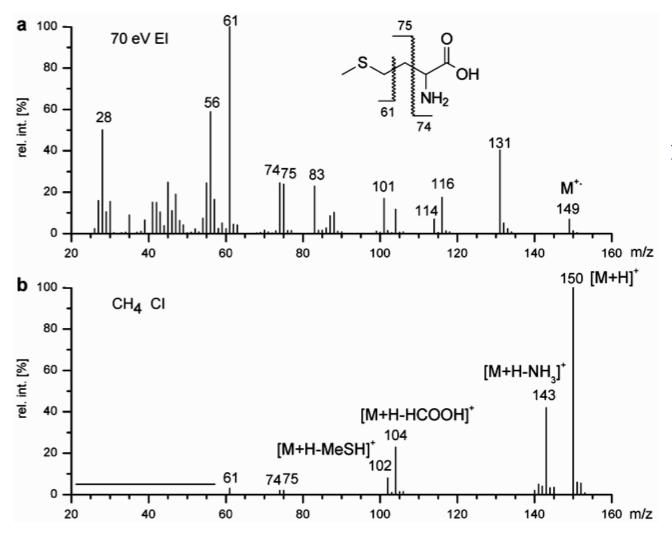
CI - Reagent Gases

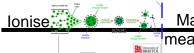

- Methane:
- $CH_4 + e^- \rightarrow CH_4^+ + 2e^- \leftrightarrow CH_3^+ + H^-$
- CH_4^{+} + CH_4 \rightarrow CH_5^{+} + CH_3^{-}
- $CH_4^{+} + CH_4 \rightarrow (C_2H_5) + H_2 + H_1$
- Isobutane:
- $i-C_4H_{10} + e^- \rightarrow i-C_4H_{10}^{+} + 2e^-$
- $i-C_4H_{10}^{+} + i-C_4H_{10} \rightarrow (i-C_4H_9^+) + C_4H_9 + H_2$
- Ammonia:
- $NH_3 + e^- \rightarrow NH_3^{+} + 2e^-$
- NH_3^{+} + $NH_3 \rightarrow NH_4^{+}$ + NH_2^{-}
- $NH_4^+ + NH_3 \rightarrow N_2H_7^+$

These charged species transfer proton H⁺ or other groups (e.g. NH_{4} +) to molecule


. .

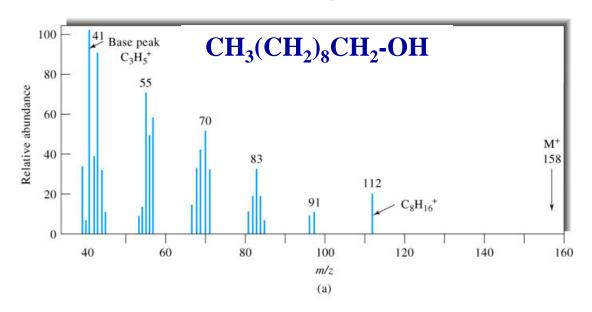
CI - Methane Reagent Gas

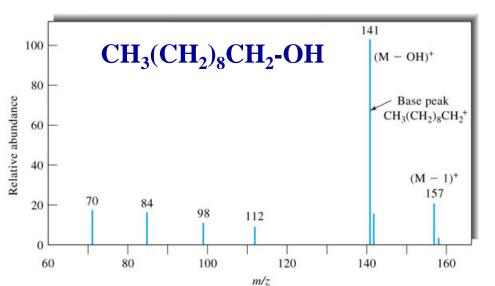



El vs Cl – Methionine; MM = 149

EI Almost complete fragmentation of M+*

CI (Methane)
Strong [M+H]⁺
ion, limited
fragmentation





El vs Cl – decan-1-ol

EI;
Total
fragmentation
of M+*

CI;
Strong high
mass ion [MOH]+; much less
fragmentation
than EI

From Skoog; Figure 20-2