

Prince of Songkla University

Philip Marriott; Monash University Philip.Marriott@monash.edu

NUS

Classification of Separation Methods

Mobile Phase: gas, liquid, supercritical fluid

Stationary Phase: Solid, liquid, bonded phase, nature

Architecture:

Column (packed, open tube), planar

Separation Methods Course Coverage - Focus on GC

- Some theoretical development
 - Diffusion; van Deemter eqn; Golay Eqn; Maximum performance; K=kβ; non-linear effects; Fast GC & method translation
- Gas Chromatography technology
 Capillary GC columns; GC Phases; Retention indices; Injection;
 Detection; Derivatisation; Sampling;
- Comprehensive two-dimensional gas chromatography
 & multidimensional gas chromatography
 "Tutorial"; Phase choices; Higher separation power; Sensitivity;
 Modulation; 2D methods; Presentation; Structure;
- Analytical mass spectrometry
 Ionisation; Example data extraction GC-MS; Library searching;
 Collisional activation, MS/MS; Target/untargeted analysis;
 Derivatisation; Internal standards; Portable GC-MS.

Partition chromatography (incl. most GC and HPLC)

Retention time, t_R , <u>Distribution</u> (Partition) coefficient, K, and <u>retention</u> (or capacity) factor, k (*** not k' ***)

- t_M = retention time (min (or vol or distance)) for unretained material = void or dead volume (injection peak ~ methane for FID)
- t_R = retention time of analyte (min (or vol or distance))
- •Adjusted retention time:

$$t'_R = t_R - t_M$$
 $(t'_R = t_S)$

(t_S, time spent in stationary phase-Skoog)

** Check the document: Nomenclature in Chromatography

The tendency for analyte to be "dissolved" in the stationary phase or on sorbent is given by the **Distribution** (partition) **coefficient**:

$$K = \frac{C_S}{C_M} = \frac{n_S/V_S}{n_M/V_M}$$

where C_S and C_M are the analyte concentrations in the stationary and mobile phases resp.

For analyte A, we define the **retention factor**, k_A as:

Thus

$$k_{A} = K_{A} \frac{V_{S}}{V_{M}} \qquad v = u \times \frac{1}{1 + k_{A}}$$

$$k_{A} = \frac{L}{t_{M}} \times \frac{1}{1 + k_{A}} \qquad k_{A} = \frac{(t_{R} - t_{M})}{t_{M}} = \frac{t_{R}'}{t_{M}}$$

- k measures the extent of retention of an analyte.
- "factors out" variables like column length and flow rate......allows comparison.
- k should ideally be in range 2-5, but in practice 1-15 is acceptable.
 (for isothermal / isocratic analysis) ** for a simple sample

Selectivity, α

- How well does a column separate (or retain??) two analytes?
- For analytes A and B, where t_{RA} < t_{RB}:

$$\alpha = \frac{K_B}{K_A} = \frac{k_B}{k_A} = \frac{(t_R)_B - t_M}{(t_R)_A - t_M} = \frac{(t_R')_B}{(t_R')_A}$$

Band Broadening and Resolution

 α does not allow for (does not consider) band broadening, so use Resolution, Rs, as a better measure of peak separation.

$$R = \frac{\Delta Z}{\frac{W_A}{2} + \frac{W_B}{2}} = \frac{2\left[\left(t_R\right)_B - \left(t_R\right)_A\right]}{W_A + W_B}$$

For baseline resolution, Rs ≥
 1.5 •

Rs
$$\sim \Delta t_R / w_A$$

Band Broadening: Plate and Rate Theory

Diffusion

- Diffusion is one cause of band broadening.
- •Spontaneous spreading of analyte from region of high concentration to region of low concentration.
- •Described by the *flux*, *J*, $(mol/m^2/s)$ (*Fick's law*) where D = Diffusion coefficient (*Einstein-Stokes* $) <math>(m^2/s)$

$$J = -D\frac{dc}{dx}$$

•Where x is distance and c is []. **In liquids, the value of D for most** analytes is approx 10⁻⁹ m²/s (~10⁻⁵ cm²/s). In gases, diffusion is much faster.

Band Broadening-Plate and Rate Theory

- amount of band broadening RELATED TO distance it travels through the column.
 - Smaller plate height, H, = less the band broadening. ✓ ✓ column efficiency.
- N is determined experimentally from the t_R, and the peak width (or peak width, half max):
- For a column of length, L, the number of theoretical plates, N, is:

$$N = \frac{L}{H} = 16 \frac{t_R^2}{w_b^2} = 5.54 \frac{t_R^2}{w_{0.5}^2}$$

Which is best - a large or small value of H?

Small H →narrow peak →more 'plates' →best Rs

A

B

Most efficient: A or B?

Measure of efficiency; N:

= distance travelled / peak spread (how far/how wide)

= L / width parameter (σ)

OR = L^2 / variance (σ^2)

So ... $N = L^2 / \sigma^2$ IN volume, time OR distance units

Band Broadening Processes-Generalised Equation

Band broadening: described by the more general equation:

Where ū is the linear flow rate, and A, B, C_S and C_M are constants (defined below) •

Multipath (Eddy diffusion term), A
"Eddy Diffusion" describes band broadening due to <u>unequal paths</u> travelled by analyte through column.

$$A = 2\lambda d_p$$

- $d_p = packing particle diameter$,
- λ = constant related to nature of packing.
- i.e. the smaller the particles, the smaller the unequal paths term so they are closer to the averaged value

Multipath (Eddy diffusion term), A

L = 5 - 200 m ID = 0.1 - 0.53 mm Inner phase coating df $\sim 0.1 - 2.0 \text{ } \mu\text{m}$

capillary column; no particle packing; no 'd_p' term, so A = 0

Longitudinal Diffusion, B/ū

Spreading of the analyte along the column, by diffusion in the mobile phase. Given by:

Where D_M is the diffusion coefficient of the analyte in the mobile phase, and is a const.

Don't confuse Cs for Cs!!

Stationary phase mass transfer term, C_s $\bar{\mathbf{u}}$

- •Related to the Rate of equilibration of analyte between the stationary/mobile phases. (Diffusion process...)
- •Depends on the immobilised liquid thickness of stationary phase.
- •Thicker films mean that molecules need to travel further within stationary phase before emerging into the mobile phase and being eluted.

For liquid stationary phases, e.g. HPLC and GC

$$C_S \bar{u} = \frac{f(k) d_f^2}{D_S}$$
 (Note Cs term here)

- Where:
 - d_f = film thickness of adsorbed liquid of stationary phase,
 - D_S = diffusion coefficient of analyte in stationary phase
 - SO thin films favour small C_s; small u always favours small Cs

Mobile phase mass transfer term, C_M $\bar{\mathbf{u}}$

- C_M depends on analyte diffusion coefficient D_M.
- For packed columns, C_M is proportional to the square of particle diameter, d_D ; for capillary columns, replace d_D by capillary I.D. d_C .

$$C_M \overline{u} = \frac{f'(k)d_p^2}{D_M} \overline{u}$$

CAPILLARY

$$C_M \bar{u} = \frac{f(k) d_c^2}{D_M} \bar{u}$$

Mobile phase linear velocity
$$u$$
, cm/s

$$f(k) = \frac{1+6k+11k^2}{96(1+k)^2}$$

Wide bore cap GC columns less efficient; d_c larger = C_m larger.

 D_M for N_2 is smaller, so C_M is larger for N_2 ; less efficient. WHY?

(how quickly does solute get to the stationary phase?)

B Term: D_M is in the NUMERATOR

C Term: D_M is in the DENOMINATOR

What does this mean?

Higher D_M is BAD for B Term, but is GOOD for C_M Term!!

THEY have the OPPOSITE Effects!

Why??

- 1. More diffusive carrier gas leads to spreading in mobile phase;
- 2. More diffusive carrier gas leads to faster travel to the stationary phase interface this is needed for separation! Many equilibration steps...

∴OPPOSITE

Band Broadening Processes-Van Deemter Equation

• Band broadening in GC described by the equation:

Band Broadening Processes-<u>Golay Equation</u> for capillary columns

• Band broadening equation for capillary column GC - the eddy diffusion term -> 0 ($A \propto d_p$; $d_p = 0$), and thus:

$$H = \frac{B}{\overline{u}} + C\overline{u}$$

Who is this 'Golay' guy?

For capillary cols, we usually use a best temperature program rate of ~ 10 / unretained peak time in min. $t_M = 0.5$ min; use a heating rate of 20 °C/min (see Hinshaw: GC in the FAST Lane paper)

5.3.4 Calculate the maximum (theory) efficiency for a capillary column.... ONLY Need d_c and k values

$$H_{\min} = A + 2\sqrt{BC}$$
 \longrightarrow $H_{\min} = 2\sqrt{BC}$

$$B = 2\gamma D_M = 2 D_M$$
 $C = f(k) d_c^2 / D_M$ $f(k) = \frac{1+6k+11k^2}{96 (1+k)^2}$

$$H_{\text{min}} = 2\sqrt{BC}$$

= 2 (2 D_M. f(k) d_c²/D_M)^{0.5} = 2 d_c (1/48 f(k))^{0.5}

Allow
$$k = 4$$

 $d_c = 0.25$ mm = $2/7$ d_c (f(k))^{0.5} = $2 \times 2.8 / 7$ $d_c \sim 0.8$ $d_c = 0.2$ mm

SO 0.25 mm ID col 25 m long for a k = 4 solute Has 25000mm/0.2mm = 125,0000 plates

Now: an EXERCISE

Calculate the efficiency for the UNRETAINED PEAK (eg Methane) CH₄ in capillary column; k =

$$f(k) = \frac{1+6k+11k^2}{96(1+k)^2}$$

 $H_{min} = 2/7 d_c (f(k))^{0.5} \sim dc / 4$ (See Last Slide) So methane should give us the narrowest peak

 $50 \ 0.25 \ \text{mm}$ ID col 25 m long for a k = 0 solute $H_{min} = 0.25 \ / \ 4 \sim 0.06 \ \text{mm}$ The column has $25000 \ \text{mm} \ / \ 0.06 \ \text{mm} \sim 400,000 \ \text{plates}$

Reducing band broadening

- Choose optimum ū (or near optimum).
- <u>GC</u>- reduce B/ū term by decreasing Temp, and reducing D_M (for B term) using narrow bore columns (won't work in LC, as D_M already small).

• <u>LC</u> -reduce C_s (non-equilib term) by minimising coating thickness on particles (d_f). (NOTE: NEW CORE SHELL PHASES) $C_s u \propto d_f$

 Both <u>GC and LC</u> - minimize A (eddy diffusion term) by reducing packing particle diameter (d_p). (or capillary columns & narrow ID)

Relationship between Resolution and Column Properties

For two analytes with similar k values,

$$R_{S} = \frac{\left(t_{R}\right)_{B} - \left(t_{R}\right)_{A}}{W} = \frac{\left(t_{R}\right)_{B} - \left(t_{R}\right)_{A}}{\left(t_{R}\right)_{B}} \times \frac{\sqrt{N}}{4}$$

$$R_S = \frac{k_B - k_A}{1 + k_B} \times \frac{\sqrt{N}}{4}$$

 Rearrangement permits calculation of the number of plates required to give a certain resolution: Practice this for a few example settings...

$$N = 16R_S^2 \left(\frac{1+k_B}{k_B - k_A}\right)^2$$

Methods for improving Resolution

- Based on column construction:
 - (a) column length increased (increase N).
 - (b) more uniform packing, smaller particles (decrease A, C_M term).
 - (c) narrower bore column (capillary) (increase N).
 - (d) different stationary phase (change K, k). FOR COMPLEX SAMPLES?
- 2. Based on column operation
 - (a) flow rate optimisation (choose best \bar{u}).
 - (b) sample size decreased (does it improve R_s?)
 - (c) different mobile phase (LC) (change k)
 - (d) col T increased (LC) (C_M term)
 - (e) col T decreased (GC) (decrease B/u term). Does not always work... Depends on T-dependence of k. BUT is good for chiral

Inlet Pressure Inj Det MS Col Length Col Inner Phase film Diameter thickness d_{f} Col flow rate Oven T, or & velocity T Program

See some data from "GC in the Fast Lane": John Hinshaw, LC-GC Magazine, vol 13, (1995) 994.

Compounds CAN swap positions / alter relative retention.

Efficiency (h) varies with flow The k value stays the same Longer col = more efficient The k value stays the same

Method Translation – A Route to Faster Analysis with Same Rs

The current trend is towards fast GC faster operation is beneficial if done correctly.

Agilent Technologies and RESTEK - free programs called

Method Translation

Convert a **SLOWER** method to a **FASTER** method **Gives essentially the same quality separation – Shorter time**. Usually- **shorter**, narrower bore column, **higher** flow velocity, **faster** temp program

Investigate this software to show how different settings can save time whilst giving the same resolution. E.g. shorter and narrower bore columns. And we can compare N₂, H₂ and He carrier.

https://www.restek.com/ezgc-mtfc

EZGC Method Translator Translation Carrier Gas Original Helium. Helium. Column 15.00 m Length 30.00 Inner Diameter 0.250.25 mm 0.25 µm Film Thickness 0.25 Phase Ratio 250 250 Control Parameters 1.40 mL/mi 1.40 Column Flow Average Velocity 42.74 60.44 cm/sec 0.41 mir Holdup Time 1.17 11.42 3.77 psi Inlet Pressure DSİ

Translate an original GC separation to a faster analysis - SAME resolution

** Use
Method
Translation to
investigate
narrower bore
columns also

 $2.8 \times faster$

Oven Program							
○ Isothermal Ramps	Ramp Rate (°C/min)	Temp (°C)	Hold Time (min)	Ramp Rate (°C/min)	Temp (°C)	Hold Time (min)	
Number of Ramps (1-4)		40	1		40	0.35	
	8.5	330	1	24	330	0.35	
Run Time		3	6.12		.2.78 m	nin	
		100	U.IZ	-	2.70		
Speed					2.83 x		

0.00

0.00 psi

Outlet Pressure (abs)

EZGC Flow Calculator

Carrier Gas

currier ous		
	Helium	
Column		
Length	30.00	m
Inner Diameter	0.25	mm
Film Thickness	0.25	μm
Temperature	40.00	°C
Control Parameters		
Column Flow Optimum Range 1.4 to 2.0 mL/mln	1.40	mL/mir
Average Velocity	42.74	cm/sec
Holdup Time	1.17	min
Inlet Pressure psi	11.42	psi
Outlet Pressure (abs)	0.00	psi
Inlet		
Temperature	250.00	°C
Liner Volume	1.00	mL
Flow	1.40	mL/mir
Splitless Valve Time	1.1 to 1.5	min

RESTEK offers a
FLOW CALCULATOR
i.e. flow velocity &
volume for a given
pressure and column
geometry

* what happens if you Change GC Temp? Change col Length?

GC T. Same flow vol = must \uparrow pressure Same P but \uparrow T = flow velocity \downarrow Col L \uparrow @ same P = large \uparrow in \uparrow_M .

A favourite A favourite Equation! Using the Equation

$$K = k \beta$$

$$K = \frac{c_S}{c_M} = k\beta = \frac{t_R}{t_M} \frac{r}{2d_f}$$

See the uploaded file