Data Analytic and Empirical Forecasting
Methods using Smart Linear Regression

Don McNell
Emeritus Professor, Macquarie University, Australia
Prince of Songkla University, Thailand, 23 January 2022

National Aeronautics & Space Administration (NASA) Data

The Terra Satellite P
Downloading Land Surface Temperature (LST) Data _ jfr;‘jf* '
Data Structure & Study Design & -
Linear Regression Models and Spline Forecasts § 7 .
Correlation and Multivariate Regression Qg T -«

Graphs of Models with Forecasts
Schematic Maps of Regions and Sub-Regions
Take-home Message



http://st.sat.psu.ac.th/seminar/ipb/pdfs/bogorRS1.pdf

NASA Data

The Terra Satellite

land on our planet.

“MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key
instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's
orbit around the Earth is timed so that it passes from north to south across the
equator in the morning, while Aqua passes south to north over the equator in
the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's
surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of
wavelengths (see MODIS Technical Specifications). These data will improve
our understanding of global dynamics and processes occurring on the land, in
the oceans, and in the lower atmosphere. MODIS is playing a vital role in the
development of validated, global, interactive Earth system models able to
predict global change accurately enough to assist policy makers in making
sound decisions concerning the protection of our environment.”

( http://modis.gsfc.nasa.gov/about/ ) NATIONAL AERONAUTICS
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AND SPACE ADMINISTRATION
https://en.wikipedia.org/wiki/Terra_(satellite)

We'll use remote sensing Land Surface
Temperature (LST) data recorded by

| NASA satellites to illustrate data analytic

methods. The data are free and cover all
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Overview of NASA's Terra satellite

John Maurer

University of Hawai't at Manoa
1680 East-West Rd., POST-815C
Honolulu. HI 96822 USA

Email: ymaurer@hawan edu

November, 2001

As an employvee at the National Snow and Ice Data Center
(NSIDC) from 2001-2009, I was part of an organization
responsible for archiving, distributing, and supporting certain
snow and ice related data products from the Moderate-
Resolution Imaging Spectrorvadiometer (MODIS) instrument
aboard NASA's Terra satellite, which was launched December
18, 1999. Providing a suite of earth observations of various
sorts, one objective of MODIS is to map snow cover and sea
ice across the globe on a daily basis to help scientists assess
and better predict global warming. This site provides an
overview of the Terra satellite and its five sensors (ASTER,
CERES, MISR, MODIS, and MOPITT), which I have put

together from various online sources.

www2.hawaii.edu/~jmaurer/terra



Climate warming, rising sea level, deforestation, desertification, ozone depletion,
acid rain, and reduction of biodiversity are all examples of ongoing global
emvironmental change that are increasingly affecting our planet. The well-being of
human beings and life at large may become largelv dependent on our ability to
understand the factors behind these events so that we can predict future impacts
and take appropriate action to prevent them from getting anv worse. Scientific
research on stratospheric ozone i the 1970's, for example, led to the 1987
Montreal Protocol for worldwide reduction in production of chlorofluorocarbons
(CFCs). Causes for global change may be natural as well as human-induced.
furthermore, and mayv be persistant and long-term or just part of a normal chmatic
cvcle: it will be important to distinguish between these different hypotheses.
NASA's Earth Science Enterprise (ESE) 1s a Presidential Initiative supported by
Congress to promote a better understanding of global environmental change using
space-. ground-, and aircraft-based measurements. ESE became an official
program in 1990 and 1s NASA's contribution to the U.S. Global Change
Research Program (USGCRP), which is the United States’ part in the larger
worldwide effort to study global change.



The Earth Observing System (EOS) is the centerpiece of ESE, and Terra is the
"flagship” of EOS. Mission planning for EOS began as far back as 1982. The
program consists of a science segment, a data system, and a space segment to
support a senes of polar-orbiting satellites. The EOS Data and Information
System (EOSDIS) is currently composed of eight Distributed Active Archive
Centers (DAACs) located around the country who are responsible for
processing, archiving, and distributing EOS data. All EOS data can be ordered
through the EOS Data Gateway (EDG) as thev become available and are, with a
few exceptions, currently free ro the public. The program is slated to continue
until at least 2015 and in conjunction with the mternational community.

The Terra satellite was launched on December 18, 1999 and began collecting
data on February 24, 2000. It operates in a polar sun-synchronous orbit at 703
km above the Earth's surface, crossing the equator on descending passes at 10:30
AM., when daily cloud cover is typically at a minimum over land. Because of this
morning equatorial crossing time. "Terra" (a mythical name for "Mother Earth")
was ongmnally named EOS-4M-1. Terra has a repeat cycle of 16 days. meaning
every 16 days it crosses the same spot on the Earth_ It is roughly the size of a
small school bus. Follow-on missions are planned to continue kev measurements
made by the five instruments aboard Terra: ASTER, CERES, MISR, MODIS,
and MOPITT.



NASA Data

Downloading Land Surface Temperature (LST) Data

To download MODIS data, go to https://modis.ornl.gov/globalsubset/ .
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Global Subsets Tool: MODIS/VIIRS Land Products

You'll need to register by clicking

Username @

on the “Sign In” button and \ don.meneil
following instructions to specify &  password

valid password. After doing this ‘
successfully, the button will

Change to “Sign out” Stay signed in (this is a private workstation)
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https://modis.ornl.gov/globalsubset/

To download LST data, you need to select the product MOD11A2 instead of
the default (MOD13Q1), and then click on the “Delete All" button to change
the default location (Oak Ridge in Tennessee) to the centre of the data pixel.

The default subset size is 3 x 3, which
corresponds to 49 pixels ina 7 by 7 array
Sonne: Snes s e mewy With approximate area 42 km?.

1D:1

2. Select the Product(s): 1 of 34 products selected )

MOD11A2

MCD15A3H VNP15A2H MYD15A2H MOD11A2

and Emissivity (Terra), 8-
Day, 1000m



If you specify latitude 6.562
and longitude 100.89 and click A, .
on “Add Location” the picture AR

PERLIS KENR
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Global Subsets Tool: MODIS/VIIRS Land Products

1. Specify the Location(s): 1 of maximum 30 locations
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— your order.

- When the order arrives, click on the file name
e and then “filtered_scaled_LST Day_1km.csv
oo to get daytime LST data as a CSV file.
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NASA Data

Data Structure & Study Design

The data are stored as a CSV text file in a table with 55 columns and as many
rows as there are 8-day periods from day 49 in year 2000 until the latest date
for which data from the satellite have been processed.

Column 3 specifies the dates of successive measurements and column 4
contains the latitude and longitude in each row.

Columns 7 to 55 specify mean Land Surface Temperatures in degrees Kelvin
within each pixel at west-to-east longitudes and north-to-south latitude bands.

|1_T_|' = 9 - = 1abd.csv - Microsoft Excel — O
m Home Insert Page Layout Formulas Data Feview WView e {a‘ =T
D1 - Je | Lat6.562Lon100.89Samp7Line7
A B C D E F G H | 1 K
1 MOD11A2 MOD11A2 A2000049 La‘tﬁ.SEELa. 2.02E+12 L5T Day 1F F F F F F
2 MOD11A2 MOD11A2 A2000057 Late.5b62Lc 2.02E+12 LST Day 1F F
32 MOD11A2 MOD11A2 A2000065 Late.562Lc 2.02E+12 LST Day 1 306.28 306.02 305.16 305.02 305.58 3(
4 MOD11A2 MODI11A2 A2000073 Latb.362Lc 2.02E+12 LST Day 1 301.56 301.12 301.06 301.e4 303.7 3(
> MOD11A2 MOD11A2 A2000081 Latb.362Lc 2.02E+12 LST Day 1 303.68 304 304.22 304 304.06 3(
6 MOD11A2 MOD11A2 A2000089 Late.5b62Lc 2.02E+12 LST Day 1 293.02 293.02 293.02 F 299.14 29
J MOD11A2 MOD11A2 A2000097 Late.562Lc 2.02E+12 LST Day 1 303.38 303.80 304,12 304.36 303.98 3(
8 o EBACIMAI AT BEAMAIMII AT ATSAMNIAE | 48 E8T) » 3 AL | 2T Moy 209 3 207 9 N 38 b1 i s I 1 i L = 1




This is just one sample of data from a much larger population.

This population covers the land area of the whole world, which an Internet
search tells us is just under 149 million square kilometers.

Samples of area 42 km? give population size 149,000,000/42 = 3,547 million.

But to find out how LST has changed over the whole planet, we don’t need to
analyze all these data. Opinion pollsters survey large populations accurately
using sample sizes of 1000 OF €SS, e vegees o5 6 5 10 75 30 5 55 30 75 10 o6 0 55 50 5

F170

An unbiased sample should cover the
whole population, ensuring that all
different components are included.

We could do this by making a regular
grid of points over the Earth’s surface,
spacing sample points equally around
latitude bands, themselves spaced at
constant distances apart. ot o3 R
This Europe/Asia map has 450 points, A8 =" 1" [ ¥ gﬁg"
each representing similar-sized areas. 5&3\‘% ~I> P %%z.ﬁ ﬁ,/;f
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The grid map for Europe and Asia can be divided into 50 contiguous regions
each containing a sub-sample of nine sub-regions, where sub-regions are
defined as arrays containing 49 pixels similar to that shown on Slide 7.

The map on the right shows a blue-
ringed region containing nine sub-
regions in Thailand, Laos, Myanmar,
Cambodia, Thailand, Vietnam, West
Malaysia and Singapore.

We'll use LST data in this sample to
llustrate data analytic methods.

This will involve graphing the seasonal
patterns, fitting models to these curves,
seasonally-adjusting them to create
time series of temperature trends, and
fitting further models to compare and
forecast global warming trends.

10




NASA Data

Linear Regression and Spline Forecasts

These graphs show seasonal patterns for the nine sub-regions. You can
create them by executing the code up to #--------- pausel in the R program
laTD5.Rcm with CSV data files ia53-1a54, 1a56-1a58, and ia60-ia63.

LST.Day (°C) Seasonal Patterns: Mar 2000-Feb 2021 South Asia: Region 1
Subreg1 n77T Lat: 14.438) [Subreg2 n:741 Lat 14.438| |Subreg 3 n762 Lat 11.812
r-sq 0584 -ﬂwg 29735 Lon:103.498 [r-sq: 0417 Avg: 24.019 Lon: 107 112] [r-sq: 0.297 Avg: 27 215 Lon:98.822
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Time gaps between
observations are 8
days except after
day 361 (5 days or 6
days in a leap year).



Red curves denote natural cubic spline functions with eight knots (shown as
the blue plus-signs) fitted to the seasonal patterns. A boundary condition is
needed to make slopes match at end-points. To create this graph, insert a #
(comment) symbol before the statement on line 3 (showSpline=="“no”).

LST.Day (°C) Seasonal Patterns: Mar 2000-Feb 2021 South Asia: Region 1
Subreg 1 n777 Lat: 14.438) |Subreg2 n741 Lat 14438 |Subreg3 n762 Lat 11.812
r-sq: 0584 Avg: 29735 Lon:103.498] |rsqg 04171 Avg: 24.019 Lon: 107 112 [rsq 0287 Avg: 27.215 Lon:98.822
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Extensive
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are sufficient,
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needed In
the middle
range where
most missing
values occur.



Linear Regression Model to fit Seasonal Pattern using Natural Spline

R:3 - -
y=a+bx+ kz—lcksk(x) Formula (linear function of a, b, ¢, ¢, ..., 5)

X=X )\ Xpp.1=X X=X )\ Xpp.0=X Xy X J(Xpy.1=X
where 5,0 = (o - B, 2+ Coghor Xl s - Lo oo s

(three boundary conditions) x,= max(x,0), and d; = X=X, 1, Uy = X, 1-X; 5, 03 = X;-X 5 .

13

yy <- as.data.frame(yt[,j+1]) Computer Program  # LST values for subregion |
names(yy) <- "y1"

yy$x <- as.integer(doy) # day of year
X <- yy$x
kn <- ¢(10,40,80,130,240,290,330,360) # spline knot locations

p <- length(kn)

d1 <- kn[p]-kn[p-1]; d2 <- kn[p-1]-kn[p-2]; d3 <- kn[p]-kn[p-2]

for (k in c(1:(p-3))) {
sk <- ifelse(x>kn[k],(x-kn[k])"3,0)
sk <- sk-((kn[p]-kn[K])*(kn[p-1]-kn[K])/(d3*d2))*ifelse(x>kn[p-2],(x-kn[p-2])"3,0)
sk <- sk+((kn[p]-kn[k])*(kn[p-2]-kn[k])/(d1*d2))*ifelse(x>kn[p-1],(x-kn[p-1])"*3,0)
sk <- sk-((kn[p-2]-kn[k])*(kn[p-1]-kn[Kk])/(d3*d1))*ifelse(x>kn[p],(x-kn[p])*3,0)
yyl,(k+2)] <- sk
names(yy)[k+2] <- paste("s",k,sep="")

}

mod1 <- Im(data=yy,y1~x+s1+s2+s3+s4+s5) # fit linear model for p=8




Choice of Number of Spline Knots

The knots cover the range of the data, so extreme knots correspond to the
minimum and maximum time points.

We always use natural splines, defined as piecewise cubic functions that are
linear beyond the range of the data. With two boundary conditions needed to
make the function linear outside the data range, the formula is as follows.

p-2
y=a+bx+ ¢ (x)
k=1
where s;(X) = (x-X,)3 - (ﬁ%k) (X-X,.1)2 + (Xp'é'lx")(x-xp)f and d; = X,-X ;.

With only two knots, the formula is y = a + b, just a straight line.

With three knots, the spline has three parameters, like a quadratic, but this
function is more useful in practice because its forecasts are linear, whereas
forecasts based on quadratics tend to overshoot or undershoot data.

With more than three knots, splines can detect periodic waves in data, and
might provide better short-term forecasts, but are less accurate for long-term
forecasts because they tend to increase or decrease too rapidly, as the next
slide shows.

14



Red curves here denote natural cubic spline functions with three equispaced
knots at years 0, 10.5 and 21 fitted to season-adjusted time series patterns.
Fitted splines on the right have 2, 3 and 4 knots and corresponding forecasts.

To create this graph, run the remaining lines in the iaTD5.Rcm program.

LST Day (°C) Season-adjusted Time Series - South Asia: Group 1 Fitted Models Forecasts
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Prediction after using the Im( ) Function in R

Suppose that a data table yy contains a set of columns xx containing
predictor variables for an outcome of interest and another column y1
containing corresponding values of the outcome variable. The R program
listed on Slide 13 gives an example where xx contains five predictors.

The command mod1 <- Im(data=yy,y1~x+sl+s2+s3+s4+s5) fits a linear
regression model and stores results in modl1, including fitted values that you
can summarise using summary(mod1$fit). However, if there are missing
values in the outcome these values are also absent from the list of fitted
values, even though regression models are designed to predict them.
Climate data reported by NASA satellites have lots of missing values, and
even small proportions of missing data can substantially distort results in
multivariate analysis, so a method is needed to impute them.

The predict( ) function in R can do this, simply by using a command such as
fv <- predict(mod1,yy) instead of fv <- mod1$fit . And it can also be used to
create forecasts when analyzing time series data, such as those shown in
the panels on the right of the graph on Slide 15 where the fitted spline
functions are extended by 10.5 years into the future.
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Acceleration

The results shown in the plots on Slide 15 show substantial variation among
the nine sub-regions sampled. Three sub-regions show statistically significant
decreases in daytime LST, one shows a statistically significant increase, and
the other six show no conclusive evidence of change over the 21-year period.
While this sample is too small to allow us to make global conclusions, the
method can be applied to all sub-regions in a grid covering the whole planet,
and we’ll do this next. But in doing so, other questions arise, and more
extensive methods are needed.

For example, we could ask if LST increase is accelerating or decelerating. This
question can be addressed by fitting splines with three knots and assessing
whether the slope of the spline at the end of the observation period Is greater
or less than its initial slope. The answers to this question for our sample of
nine sub-regions are seen in the numbers associated with the Acceleration:
legend that shows the increase in the estimated LST increase per decade over
the 21 year period and its p-value for testing the null hypothesis of no change.
We see that three sub-regions decelerated and the remaining six showed no
conclusive evidence of change.

17



NASA Data Correlation and Multivariate Regression

Time Series Correlation

Regression models require statistical assumptions including independence of
errors. For time series data where a model separates the data into a signal
containing the available information and a series of residual errors, these
errors may be correlated, in which case this autocorrelation structure also
needs to be addressed.

The arima( ) function in R can be used to fit a regression model that takes
such autocorrelation structure into account. For example, to fit a model with
two auto regression parameters with predictor variables in xxj, the statement

ZJ1 <- arima(yyj,order=c(2,0,0),xreg=xx])

may be used, where xx] contains the terms in a spline function with two, three
or four knots as defined on Slide 14. For two knots xxj Is just X, for three knots
it comprises x and s1(x), and for three knots it contains the three columns x,
s1(x) and s2(x). For the two-knot model, estimates for the auto regression
parameters with their standard errors bracketed are shown on Slide 15 as arl
and ar2.

18



Multivariate Regression

So far we have focused on fitting regression models to average values of land
surface temperatures within a specified sub-region. But if we want to know
what is happening in a larger region such as the whole area within the blue
ring shown on Slide 11, the results from the nine sampled sub-regions need to
be aggregated in some way. Computing the average of the nine component
estimates provides an answer, but unless these components are mutually
Independent, its standard error is not easily calculated.

It turns out that most climate variables are spatially correlated, even when
hundreds of kilometers apart. However, correlated multivariate outcomes in
regression models can be handled straightforwardly using multivariate linear
regression, and the Im( ) function in R does this by specifying the outcome
variable as a matrix rather than a single column. For example, the iaTD5.Rcm
program uses the statement Im(as.matrix(ySa)~ySA$t[1:nObs]) -> mod to
do this, where ySa contains the nine season-adjusted LST variables (also
filtered to remove time series autocorrelation using the arima( ) function).

We use this method to analyze LST increase and acceleration within regions.
Standard errors for average LST increases in regions are then computed from

a variance-covariance matrix (an attribute of mod).
19



NASA Data

Graphs of Models with Forecasts

These graphs show three fitted models for each of nine sub-regions in seven
regions of the south Asian continent, and forecasts up to 10.5 years ahead.

z values are based on statistical tests of the null hypothesis that there is no
overall daytime LST increase in a region, assuming that increases in sub-
regions of a region are the same. Decreases occurred in five regions, one
region increase, and one region showed a likely increase (z between 1 & 1.96).

ZAc values result from similar tests on acceleration. Two regions decelerated
and one region accelerated.
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NASA Data Schematic Maps of Regions and Sub-regions

This map shows daytime LST increases for seven regions in the south of
continental Asia, including Pakistan, India, Nepal & Bhutan, Bangladesh and

seven ASEAN countries.
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NASA Data Take-Home Message

To summarize, we have applied basic data analytic methods to a sample of
daytime land surface temperature remote sensing data reported from Earth-
orbiting satellites from March 2000 to February 2021. The methods involve
relatively simple regression models and don’t require complex programs.
They just use the base R software system, which is freely available and open
source, and don't require any additional libraries.

Our sample is too small and possibly too short in duration to say conclusively
how rapid or widespread global warming is. But with increased sample sizes
and further time, results will become clearer. Within a few months, we’'ll have
another year of data.

Next week we'll extend the sample to include the whole of Europe and Asia,
and other continents and islands around the world.

Please email me at don.mcneil@mg.edu.au if you'd like to work with us on
this important research topic.

22 Thank you for your patience. Hope to see you next week!
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NASA Data Recap of Session 1

Last week we applied basic data analytic methods to land surface temperature
(LST) data from Earth-orbiting satellites recorded from March 2000 to February
2021 at 8-day intervals from sub-regions each covering 7 x7 pixel arrays (area
42 km?) downloaded from a NASA website. The sample comprised just nine
sub-regions taken from a regular grid of 450 similar sub-regions covering the

Latitude Degrees &5 spr‘is k&iji;} B5 85 B0 TS iuj?;* EIE‘J fg\fp 45 40 EUFOpe/ASIa COntInenta| |and mass.

Using a linear regression model to
- estimate LST increase in this region,
" the z-value was -2.191, indicating a
" statistically significant decrease in
., day land surface temperature.

But is a sample
of nine large
enough to be
conclusive?




This graph shows time series plots of season-adjusted day LST in the nine sub-
regions as shown on Slide 15 from last week’s session. R-squared statistics are
of minor relevance so are not shown. P-values are much more important.
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NASA Data Increasing the Sample Size

The size of a sample does not depend on the population size. Provided that
the sample is representative of the population and includes its different
components in proportion to their presence in the population, a sample just
needs to be large enough to give sufficiently precise estimates.

It's quite possible that a sample of nine is large enough to provide a precise
estimate. This is true when all members of a population are very similar, like
grains of sand on a beach. But in other situations, such as stars in the night
sky that include dwarfs and giants, where there is large variation between
different members of the population, the sample size needs to be much larger.

The grid we have used for the Europe/Asia continent uses distances of 420
pixel widths (360.0 km) between successive points around latitude bands and
315 pixel widths (270.0 km) between successive points around longitude great
circles. These numbers are divisible by 3, 5 and 7, making it easy to pack sub-
regions more tightly within a study area of interest. Let's see what happens
when these gaps are reduced to 140 and 105 pixel widths, respectively.




This map shows how daytime land surface temperature increases varied in
three eastern regions of the south Asian group, as shown on Slide 21 from last
week’s session. Results for the two easternmost regions differ substantially.
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“ y Latitude Degrees
day LST “probably” increased.

In Bangladesh, northern areas of
Thailand, Laos, Thailand and
Vietnam, day LST increased.

But in the south of this area, day
Subregions
LST decreased. 10| & PEssrelzz99)

@ Stable (7] <= 1) 2 "o
The white dots show a denser @ Detrbmeesitn) | B R
grid that expands the number of  ——— H—

— Deceleration
sub-regions in this southern M increase >

[ Likely Increase

region from 9 to 63 by inserting B e
B Decrease

tWO addItIOna| gl’ld pOIﬂtS between (O Acceleration B b2
. . . -51{(2 Deceleration Tt &1&. ol
neighbouring pairs. = - -

4 Longitude Degrees




NASA Data

New Results for an ASEAN Region

The results for the south-eastern region in the south Asian group with the
sample size increased to 63 (right panel) are quite different to those for the
same region with sample size nine (left panel). How can this be explained?

Day LST Increase in mainland SE Asia: Mar 2000 - Feb 2021
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NASA Data Confidence Intervals and Forest Plots

Confidence intervals (Cls) provide an explanation. The “smart” regression
model we're using to estimate LST increases also provides estimates of
standard errors, which in turn tell us how accurate these results are.

A 95% confidence interval is an interval that contains an unknown population
parameter with probability 0.95. If model assumptions are satisfied, to a close
approximation these intervals have width twice the standard error on each

Side Of the mOdel eStimate- South Asia: 95% Confidence Intervals
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An important rule of thumb in statistics is that the standard error (SE) of an
estimate decreases in proportion to the square root of the sample size (n).

This leads to the simple formula SE = sd/\/n, where sd is the standard

deviation of a single population memher |
South Asia: 95% Confidence Intervals
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So the homogeneity assumption is highly questionable for these data. The
upper three sub-regions on the plot have higher day LST increases than the

middle three, and this fact strongly suggests that the result is wrong.
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When the number of sub-
regions in the study area is
increased to 63, the forest plot
IS more informative.

Confidence intervals are again
shown for sub-regions in each
of the smaller regions together
with their overall Cl, as well as
a Cl based on aggregating all
63 sub-regions. If we can now
assume homogeneity of these
increases (and this remains
questionable), for the study
area as a whole we see that
day LST increased, in
contrast to the original

South Asia: 95% Confidence Intervals
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NASA Data Creating a Thematic Map

The program that creates graphs for regions similar to that shown on Slide 2
(saTD5b.Rcm) also stores results in text files that can in turn be used to
create thematic maps similar to those shown on Slide 5. The map on the left
of this slide uses a sinusoidal polar projection that matches the nearly circular
orbit of the Terra satellite. To create this map we need to use this projection.
The method is described later in this session.

The map on the right of Slide 5 is simpler to create because it just uses
longitude and latitude as Cartesian coordinates. The program is in the file
seAsia.Rcm. It uses shape files for different countries stored as four
variables named plotID, pointID, x and y in a database table. To create this
map, the countries needed are Vietnam (plotlD: 236), Cambodia (plotID 36),
Thailand (plotID 213), West Malaysia (155.4), Myanmar (plotID 25), with
some additional countries and islands. These data are stored in the file
wsea.csv. The file saLSTinc.txt is created or updated when saTD5b.Rcm is
executed.



To test your programming skills, see if you can create the map below.
The steps are as follows.

1: Copy the program file seAsia.Rcm
and data files wsea.csv and Day LST Increase in Mainland SE Asia: Mar 2000 - Feb 2021
saL.STinc.txt into your working L afifude Degrees
directory. If the name of this
directory is not c:/world, edit
seAsia.Rcm by changing the
statement setwd("c:/world") to 15
contain this folder name.

20
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Your next task is to create a similar
map for Greenland & sampled
western islands. Do this by copying

greenland.Rcm and giLSTinc.txt.

and executing the Rem file.

But this map isn't what the Terra
satellite sees, because longitudes
near the poles are much closer
together than those near the
Equator.
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The map below is what Terra sees.

Grid points we've been using for our
survey of day LST increases are
shown, and are equispaced, unlike the
same points in the map on the left.
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NASA Data

Using a Sinusoidal Projection

MODIS climate data are stored as pixels on a spherical surface approximating
that of the Earth. For land surface temperature, these pixels all have the same
west-east and north-south span (925.7 meters) and are referred to as 1 square
kilometer pixels even though their area is only 0.857 km?. They are grouped
into tiles comprising arrays of 1200 x 1200 pixels into a sinusoidal tile grid.
To identify a specific pixel, four coordinates are used. The first two (v and h in

h
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To create a map similar to what the Terra satellite sees, we use what we call a
“sinusoidal polar” projection. This is essentially the same as the sinusoidal tile
grid described on Slide 12, but with its origin centered at a user-specified
location that could be anywhere on the Earth’s surface. For example, the map
shown on the right of Slide 11 has its origin at latitude 45 degrees north and
longitude 80 degrees west of Greenwich. This feature allows us to create a
map that looks directly down from outer space to the specified location.

Here's what the R code looks like. It just involves trigonometric
transformations of the latitudes and longitudes.

phd0 <- 105; thd0 <- 50
wi02 <- subset (wc, plotID==86) # Greenland
xx <- wi02%$x; yy <- wi02%y
ph <- (xx+phd0)*pi/180; th <- yy*pi/180
XC <- cos(th)*cos (ph); yC <- cos(th)*sin(ph); zC <- sin(th)
XCR <- cos(th0)*xC + sin(th0)* zC; yCR <- yC; zCR <- -sin(th0)*xC + cos(th0)*zC
lonR <- 90-(180/pi)*atan2( xCR, yCR); latR <- (180/pi)* asin (zCR)
lonR <- lonR *cos (latR *pi/180)
polygon( lonR, latR, col=rclr, border=gClr)
13



Your next task is to use the program greenlandPolarA.Rcm to create this
corresponding map for Greenland and the western islands sampled in the
grid. You'll also need to get a copy of the text file wgis.csv that contains

boundaries for Greenland and these western islands that are in the global

grid sample.

We've created four regions
from the 36 grid points that
fall upon land in Greenland
and the north Canadian
Islands. These islands
comprise Ellesmere, Devon,
Melville and North Victoria in
Region 1 and Baffin,
Somerset, Southampton and
South Victoria in Region 4.

To include Canada, you'll also
need the file wca.csv.
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NASA Data

N Ellesmere

Region 1

Graphs of Models with Forecasts
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Region 2: Central Greenland
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Climate scientists are concerned because global sea level will rise by 7.2
meters if its glaciers melt. But these plots show that day LST in central Green-
16 land has been stable over the last 21 years, and is forecast to remain so.



Region 3: Southern Greenland
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These results complement those for the northern areas of Greenland, again
showing stable day land surface temperatures with similar forecasts.

17



Region 4: Baffin, South Victoria, Somerset & Southampton Islands
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In other major islands north of Canada day land surface temperatures did not
appear to increase over the last 21 years. But lack of homogeneity suggests
that this sample is too small to provide conclusive results, and that further
analysis similar to what we did for the South-East Asian region is needed.
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NASA Data Take-Home Message

To summarize, we have continued applying basic data analytic methods to
samples of daytime land surface temperature remote sensing data reported
from Earth-orbiting satellites from March 2000 to February 2021.

In particular, we found that it is important to ensure that a population sample
IS homogeneous. If not, its size needs to be increased to make sure that all
different components of the population are covered.

We also learnt how to use a simple trigonometric transformation of
latitude/longitude coordinates to create maps that do not distort the shape of
the area on the Earth’s surface as viewed from a satellite.

We also studied land surface temperature increases and forecasts in
Greenland and north Canadian islands.

Please email me at don.mcneil@mq.edu.au if you'd like to work with us on
this important research topic.

19 Thank you for your patience. Hope to see you next week!
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NASA Data

Last week we continued to apply basic data analytic methods to land surface

Recap of Session 2

temperature (LST) data downloaded from a NASA website. We addressed the
guestion “how big a sample is needed?”, showing that when the homogeneity
assumption fails a much larger sample may be needed.

We showed how forest plots are
Informative when aggregating
information from different samples
taken from a population.

We used a sinusoidal polar
projection to show what is really
seen by a satellite above our planet.

We studied daytime LST increase &

acceleration in Greenland and major

north Canadian islands. Is Region 4
homogeneous? We'll find out today.

/
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NASA Data

Blanket Coverage: Data from Tonga

Our climate research has focused largely on detailed blanket coverage of small
areas, such as Nepal (Ira), Phuket province (Noppachai), south Asian islands
(Tofan & Munawar) and Taiwan (Sahidan). But in an inspiring lecture at Hat Yai
campus of PSU on 8 February 2018 Nobel chemistry laureate Fraser Stoddart
convincingly advised us to “tackle big problems”. P i

NASA climate data availability makes this possible, \
simply by taking a sufficiently large sample of the

whole world. The regular grid we're using covers all

land on the planet using a sample of no more than

2000 sub-regions each having area 42 km? and
separated by a few hundred kilometers.

But if an area of interest is sufficiently small, we can

still cover it with no gaps. Tonga, a group of islands
In the Pacific ravaged recently by a tsunami caused
by an undersea volcano, is such a place.

2 Its main island covers just 240 km?,




Latitude Tongatapu Island

Here's a map of nine sub-regions 2105
covering most of Tongakapu island.

: : Nuku alofa Niutoua
You can create this map by running

the R program tongaMap.Rcm that 2118 W

reads files wtg.csv & tglLSTpInc.txt. .. Trouma /@é 7//
The southernmost region covers a lot >
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consequently reduced.
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LST.Day (°C) Seasonal Patterns: Mar 2000-Feb 2021 Tonga: Region 1
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These graphs show results for the
nine sub-regions of Tongakapu
Island mapped on Slide 3.

Given its tropical zone location,
seasonal variation is not large.

Fitted models show very similar
patterns for all nine locations, with
no evidence of change except for

+ + 0+ 4+, + o+ o+ ¢ + + 0+ 4 + O+ o+ % + + o+ o+ + o+ o+ ¢
1 73 145 217 289 361 1 73 145 217 289 361 1 73 145 217 289 361
Day of Year Day of Year Day of Year e Sou ern mOS
LST.Day (°C) Season-adjusted Time Series - Tonga: Region 1 Fitted Models  Forecasts .
SRl 0 IR AT b R ] “t s Sub-region, where a
30 b /l.vi: ]
25 N < 255 ] "
~—L. ‘likely” day LST
20 - , = 25.0
5. [Koloval Nukunuku . | [Nuku'alofa nl d
10 Mgan Inc/dec: 0|085 p: 0.508 Wean|incidec: -0/041 p: 0.734 Mean Inc/dec: 0|06 p: 0.891 240 ecre ase OCCU rre ]
ar Accelergtiop/dSq: 0,031 p: 0.844 Accelergtioh/dSq: 00038 p: 0.733 Acceleration/dSg: 0,049 p: 0.738
—3-knot|Spling Fit: p: 0.733 —|3-knot Spline Fit:|p: 0.81 —3-knot|Spline Fit: p: 0.937 23.5 . .
[Eubreg 4 nj 94. 0. 03%)) [Subreg S nj 947 0. 033)] [Fubreg& njg0g R 03E] =
S | |58 o a0 g [y | [wA h oD [ | s pasdon No 3-knot 3p||ne fit
30 -
h lue bel
20 dS a pP-value beiow
L 1 ., 4 24
s |Kolonga Niutoua Houma 0.05. but for the 4
10 r.1e;n Incidec: -0/012 p: 0.907 Mean|Inc/dec: -0/075 p: 0.474 Mean| Inc/dec: -0/006 p: 0.981 23 ] ) ut Or t e =
ar Acceleration/dSg; 01018 p: 0.886 Acceleration/dsg: -01085 p: 0.453 Accel@ration/dSg; 01175 g 0.284
—3-knot|Spling Fit: g: 0.933 —3-knot|Spline Fit: p: 0.584 —3-knot|Spline Fit: p: 0.553 . .
Fsubreg 7 nj 916 1. 0.189((0.034)| (Subreg & n; 9386 1: D.176((0.038)| |Subreg 9 ni 912 1. 0.184((0.033) z k t | f t b—
seffeeRT 4 (e DImi] [eRg ol [eDUSEEE) Be e (ol Lieee == KNOU Spline Tit su
30 X
4,5,6,88&9
2[, 2 ) = regions 4, 5, 6,
160 Vaini| - -|Mua| | - Fua'amotu |’ 1 |4 045 245 | statisticall
10 I S e o dl€ all SlaliStiCally
Mean Inc/dec: 0.02 p: 0.867 Mean Incidec: 0079 p: 0.484 Mean|Inc/dec: -0/181 g 0.102
i Acceleration/dSq: 01151 p: 0.289 Acceleration/dSq: 01121 p: 0.377 Acceleration/dSq: -0/051 p: 0.704 235 . .o
4 — 3-knot|Spling Fit: p: 0.562 —13-knaot Spling Fit:|p: 0.53 —3-knot|Spling Fit: p: 0.245 f t
0 3 6 9% 1215 8 210 3 6 9 1215 18 21 0 3 6 9 12 15 18 21 0 6 12 18 24 30 Slgnl ICan .
Year after 2000 Year after 2000 Year after 2000 Year after 2000



These graphs show results from four more islands in Tonga (Ha'ano, Fortua
and Lifuka in the northern group and Ohonua south of Tongakapu), together
with those for Tongakapu already shown in the central panel of Slide 4.

These graphs show
deceleration in day
LST change for the
three islands in the
northern group.

The 4-knot fits are
quite similar, with
most showing a 20-
year cycle, but more
extensive data are
needed to confirm
this pattern.

Fitted Models Forecasts
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A forest plots of day LST increases in these
Island sub-regions of Tonga appears to
satisfy the homogeneity assumption, with
the possible exception of Ha'ano in the
northern chain. Results suggest “likely
decrease” (z=-1.7).

Note that acceleration, like what a car does
when the driver puts the foot down, Is the
gain in increase per unit time, in this case
degrees Celsius increase per decade per
decade (/decade?). This can be estimated
from the data using the 3-knot spline,
defined in Slide 14 of Zoom 1 as
y=a+Dbx+cs;(X). The spline s,(x) reduces
to the linear function d+3cx beyond the
third knot, so the acceleration per decade?
IS obtained by multiplying the estimate of ¢
by 3 and dividing by 2.1 (decades
‘Observed).
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Get tg2LSTplInc.txt and run
tongaClplots.Rcm to create these.
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NASA Data Results for Larger Sample in Baffin Island Region

Last week we got more accurate results for an inhomogeneous region in
South-East Asia by splitting it into seven smaller regions each containing nine
sub-regions. As a result, we concluded that day LST in the region overall was

il . N 1] N
Day LST Increase in South Asia: Mar 2000 - Feb 2021 likely increase”, not “decrease”.
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We'll now use the same method to re-examine day LST change in region
- comprising Baffin Island and islands to its west in northern Canada.



The graph below shows that in Region 4 (comprising Baffin, south Victoria and
some other islands in northern Canada) day LST was stable from 2000-2020,

with z-value 0.979.

Note|that we can insert two extra sub-regions between each neighbouring pair.
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A schematic map shows “likely This compares Nine sub-regions: z = 0.98
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Plots of fitted models show Nine sub-regions: z = 0.98 =

wide variation for day LST %@%ﬂ% | Bamnw%‘@ :
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Confidence intervals also highlight wide variation but no
indication of inhomogeneity. We see that Victoria Island
need not have been divided. The next step would be to
repeat this analysis for Region 1, including more islands.
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baffinClplots.Rcm
to create these
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NASA Data Using a Function to simplify a Computer Program

The code to create a map of what the Terra satellite sees Is repeated many
times in the program greenlandPolarA.Rcm that we used to display the map
on Slide 9. It contains the following R commands, where wa Is a data frame
containing the four column variables plotID, pointID, x and y to be mapped.

wa$x <- wa$x+phd0 # longitudes with origin at phd0
ph <- wa$x*pi/180 # converted to radians

th <- wa$y*pi/180 # latitudes in radians

XC <- cos(th)*cos(ph) # their Cartesian x coordinates
yC <- cos(th)*sin(ph) # their Cartesian y coordinates
ZC <- sin(th) # their Cartesian z coordinates

XCR <- cos(th0)*xC +sin(th0)*zC # Step 1. rotate around axis through Equator
yCR <-yC
ZCR <- -sin(th0)*xC +cos(th0)*zC

lon <- 90-(180/pi)*atan2(xCR,yCR)  # Step 2: convert back to longitudes and latitudes

lat <- (180/pi)*asin(zCR)
lon <- lon*cos(lat*pi/180)

12



We can create a function called spp( ), say, that creates the sinusoidal polar
longitude and latitude coordinates corresponding to x and vy as follows.

spp <- function(x,y,phd0,thd0) { # sinusoidal polar projection function
ph <- (x+phd0)*pi/180; th <- y*pi/180

XC <- cos(th)*cos(ph); yC <- cos(th)*sin(ph); zC <- sin(th)

XCR <- cos(th0)*xC +sin(th0)*zC; yCR <- yC; zCR <- -sin(th0)*xC + cos(th0)*zC

lonR <- 90-(180/pi)*atan2(xCR,yCR); latR <- (180/pi)*asin(zCR)

lonR <- lonR*cos(latR*pi/180)

cbind(lonR, latR)

)

Here's how it works. Suppose wgis.csv is a CSV file in your working
directory that contains boundaries for countries or islands you wish to map.
Three of these places have plotIDs 35.166, 35.124 and 35.131. The origin
for your map is at longitude 90 and latitude 50 degrees.

read.csv(“wgis.csv”, header=TRUE,as.is=TRUE) -> wc
phd0 <- 90; thd0 <- 50
wiz <- subset(wc, plotID %in% ¢(35.166,35.124,35.131))
lonlat <- spp(wiz$x,wiz$y,phd0,thd0)
polygon(lonlat[,1],lonlat[,2],border=1,col=rclr)
13



NASA Data Forecasts based on Empirical Results

Climate trends are difficult to forecast. Nobody has yet
come up with a theory that gives accurate results.

So instead, we'll just use the 21 years of NASA data to
see if we can forecast a few years ahead, say 6 years.

The graphs on the right show fitted spline curves to
season-adjusted day LST for the nine sub-regions of
Central Baffin Island, with forecasts obtained simply by
projecting the spline curves 10.5 years ahead.

Assume we have data for just 15 years and we fit a
spline model to these data and use it to forecast the
fitted value 6 years ahead, and compare the result with
the known fitted value. Using a sizable sample of sub-
regions, we can use the distribution of these errors to
calculate a 95% confidence interval.

This is our empirical forecasting method.
14
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However, this is easier said than done. The program we have been using
assumes precisely 21 years of data, and would need to be generalized to
allow different time spans. And it needs to be applied to sufficiently large
samples of homogeneous sub-regions to achieve accurate forecasts. As we
have seen different grid dimensions are needed in different areas of the world.
And the amount of data is quite large.

Given that essentially the same program is used for all samples (iaTDb5.Rcm
for the south Asian sub-continent, giTDb5.Rcm for north American islands,
tgTDb5.Rcm for Tonga, etc.) it would be better to turn this program into a

function, with arguments specifying parameters that specify the sample
Identity, the observation and forecast periods, and other relevant choices.

Once this is done, the function can be stored as an R command file
(tdb5.Rcm, say) in a working directory and used in a another program simply
by executing the statement source(“tdb5.Rcm”) within that program. If you
have been using R programs to make graphs of democratic confidence you
will be familiar with this method, where the function dcis.Rcm is used.

Using this approach, we’ll show some empirical forecasts next week..
15



NASA Data Take-Home Message

In this session we continued applying basic data analytic methods to
samples of daytime land surface temperature remote sensing data reported
from Earth-orbiting satellites from March 2000 to February 2021.

We saw that blanket coverage of all data in an area is feasible for small
areas such as the Pacific islands of Tonga, where we found very similar
trends in widely separated locations.

We also studied land surface temperature increases and forecasts in and
around Baffin island, finding that results did not change very much when the
sample size increased, in contrast to an area around southern Thailand.

And we saw how a user can create their own function to simplify computer
programming, and we suggested how this approach could be used to
facilitate empirical time series forecasting. Next week we'll follow up on this.

Please email me at don.mcneil@mg.edu.au if you'd like to work with us on
this research topic.

16 Thank you for your patience. Hope to see you next week!
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NASA Data

Last week we continued to apply data analytic

methods to land surface temperature (LST) data
downloaded from a NASA website, focusing on
data from islands within the Arctic Circle above

Canada and Tonga in the south Pacific ocean.
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NASA Data Estimating Acceleration: The 3-Knot Spline

In Session 1 we gave a formula for a natural spline, defined as a piecewise
cubic function that is linear beyond the range of the data. Two boundary
conditions are needed to achieve this linearity, and the formula is as follows.

-2
y=a+bx+ %Cksk(x),
k=1

where Sy(X) = (X-X,); - (KD(J—XK) (x-X,.)3 + (fp'%(k)(x-xp)f , d =Xx,%,, and x, = xif x>0, 0 otherwise.

Knots are at x, (k=1, 2,.., p). With only two knots, the formulaisy =a + bx, a
straight line. For three knots, the spline has three parameters, like a quadratic,
but a natural spline is more useful in practice because its forecasts are linear,
whereas forecasts based on quadratics tend to overshoot or undershoot data.

With p=3, the formula is y=a+bx+c, s,(x), where, after a little algebra, we get
3(X) = XX TXpXg+X4) - XpXa(Xo+Xg) X} + BCy (XpXy) (Xg-Xy) X fOF XX,
This tells us that before the first knot (x,), y would increase at rate b, whereas
after the last knot (x;), y would increase at rate b+3c,(x,—X;)(X3-X,). S0 the

Increase In slope over the range of the data (X3-X;) IS 3C, (X,-X{)(X3-Xy).
Consequently, the average acceleration over the data range is 3¢, (X,—X,).



NASA Data A Simulation Study

For 21 years of data in the range (0, 2.1) decades, a natural cubic spline with

three equispaced knots has x, = 0, x, = 1.05 and X, = 2.1, so the acceleration

for LST in degrees Centigrade per decade squared is thus (3x1.05)c, namely,
3.15x%c.

Note that this differs from the formula given on Slide 6 in Session 3, which
seems to be incorrect.

We can do a simulation study to check the formula, as follows.

Note that a simulation study starts with an assumption about a population, and
then takes a random unbiased sample from this population with the objective of
comparing estimates of specific population parameters with their known values.

For time series data, we assume that after adjusting for seasonal patterns and
autocorrelation, observed data y are determined by an additive model
expressed as 'y = S + z, where S Is a signal with known functional form and z is
a sequence of independent and identically distributed normal random variables

with mean 0 and constant standard deviation (white noise).
3



Let's assume that the signal for season-adjusted day LST in a sub-region of
Interest follows a symmetric quadratic function over the 21-year range with
maximum 10.5°C after 10.5 years and minimum values 0°C at the beginning
and end of this period. Also assume that the noise has standard deviation 1°C.

Here's some code to simulate data observed at 8-day intervals (46 per year).

set.seed(12345) # ensure repeatability
X <- ¢(1:(46*32) )/460; nObs <- 46*21 # 21 (observed)+ 11 future years
Z <- rnorm(nObs,0,1) # white noise with sd=1
S <- 10.5-(x[1:nObs]-10.5)*2/1.05 # quadratic signal
y<-S+z # data observed
y <- c(y,rep(NA,46*11)) # unknown future values
kn <- 2.1*¢(0:2)/2; p <- length(kn) # three equispaced knots
yy <- as.data.frame(chind(y, x)) # database table
names(yy) <- c("y","x") # variable names
d1 <- kn[p]-kn[p-1] # gap between last two knots
for (k in c(1:(p-2))) { # create spline function
sk <- ifelse(x>kn[k],(x-kn[k])*3,0)
sk <- sk-((kn[p]-kn[k])/d1)*ifelse(x>kn[p-1],(x-kn[p-1])"3,0)
sk <- sk+((kn[p 1]-kn[k])/d1)*ifelse(x>kn[p],(x-kn[p])*3,0)

yy[,(k+2)] <- Given that p=3, this loop can be simplified to
sG] < paste's K, sep=") \ S 0= sl cr e sl
((kn[3]-kn[1])/d1)*ifelse(x>kn[2],(x-kn[2])"3,0)+

mod2 <- Im(data=yy,y~.) # fit linear model (kn[2]-kn[1])/d1¥ifelse(x>kn[3], (x-kn[3])"3.0)
|

4 summary(mod?2) # display results




These plots show results.

Estimated values are b = 1.44
and c, =-0.439, corresponding
to initial increase in day LST °C
per decade and acceleration
3%(-0.439)x1.05 = -1.38 °C per
decade? over the data range.

This acceleration corresponds to
a decrease in slope of 1.38x2.1
(2.9°C/decade?) for the 21-year
period of observation, which
matches the decrease from 1.44
to -1.46 shown in the lower plot
panel.

Simulation Study
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So the simulation study confirms the result shown on Slide 2 and shows that
the formula given on Slide 6 in Session 3 is wrong.
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You can run the following code in simulateTD.Rcm to do this simulation.

windows(6,6)
par(mfrow=c(2,1),las=1,mar=c(1,0.5,2,0.3),oma=c(1.5,3,2,1),tcl =0.2,mgp=c(1.1,0.1,0))
plot(x,y,cex=0.2,xlim=c(-0.9,3.6), ylim=c(8,11), xlab =", ylab ="")
ylab <- expression(paste(“LST.Day (*,degree ,"C)",sep=""))
mtext (side=3,line=-0.1,adj=-0.1,ylab)
mtext (side=3,line=0.1,adj=0.16,"Past")
mtext (side=3,line=0.1,adj=0.41,"Observation Period")
(
(

mtext (side=3,line=0.1,adj=0.84,"Future")

mtext (outer=T ,line=-0.5,adj=0.5,"Simulation Study")

abline (v=c(0,2.1))

points(x[1:nObs],fv[1:nObs],type="I", col=2,lwd=2)

fSp <- 1:(46*11) # future span
points(x[nObs +fSp],fv[nObs +{Sp],type="1", col=2,Ity=3,lwd=2)

nf <- length(fv); np <- length(fSp)

df <- 460*(fv[-1]-fv[-nf]) # model increase/decade
lg <- c("fitted model”,"forecast")

legend("bottomleft", inset=c(0.01,0.01), lg, lwd =2,col=2,Ity=c(1,3), bg ="ivory")
plot(NA, xlim=c(-0.9,3.6),ylim=c(-3,3),xlab="",ylab="")

points(x[-1][1:nObs-1], df[1:nObs-1],type="I", col=2,lwd=2)
points(x[-1][nObs-1+{Sp],df[nObs-1+{Sp],type="I* ,col=2,Ity=3,lwd=2)

mtext (side=3,line=0.1,adj=-0.13,"Model Increase/decade in Day LST")

mtext (side=1,line=1,adj=0.5,"Year after 2000")

abline (v=c(0,2.1))

text(0,df[1],round(df[1],2), adj=c(1,0.5))
text(3.2,df[nObs],round(df[nObs],2),adj=c(0,0.5))

6



NASA Data

Function to Fit a Model to LST Data

Recall that in Session 3 we showed how a computer function spp( ) uses a
sinusoidal polar projection to create maps that show what landforms on the
Earth really look like from outer space.

Today we’'ll create another computer function fitLST( ) that fits natural cubic
splines to LST trends adjusted for seasonal patterns and autocorrelation. We
already have programs that create corresponding graphs, so we can do this
by deleting the commands that create the graphs.

For example, in Session 3 a program tgTD5b.Rcm created seasonal patterns
and time series for sub-regions In Tongakapu Island, as shown below.
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The program tgTD5c.Rcm does this. It has two further integer parameters (yrl
and yr2) that specify the period of observed data, so if these values are 1 and
21, say, the data from day 49 in year 2000 to day 49 in year 2021 are selected,
and the result is the same as what tgTD5b.Rcm gives. However, if yrl remains
1 and yr2 is 14, the data extend from day 49 in year 2000 to day 49 in 2014.

This modification LST Day (°C)

40

enables prediction of
known fitted values,
so forecasts can be
checked.
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Crosses show fitted values of 3-knot splines using data from 2008 to February

2021, compared with forecasts using data up to 2014. Forecasts for sub-regions

are all reasonably accurate, all within 0.4°C except for sub-region 4 that differs
from the fitted value by 1°C. But 4-knot splines badly over-forecast.
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The function fitLST.Rcm applies code from tgTD5c.Rcm to sub-regions in
other regions. Here’s how it does that.

# fitLST.Rcm # fit model to LST data in (yrl,yr2) years inclusive
fitLST <- function(aa,sregs,yrl,yr2) { # .. for region in place aa with sub-region IDs in sregs
ff <- list.files()

ffs <- ff[substr(ff,1,2)==aa & substr(ff,6,8)=="csv"|
ffs <- ffs[as.integer(substr(ffs,3,4)) %in% sregs]
nSubRegs <- length(sregs)

nRegs <- floor(nSubRegs/9); subRegs <- sregs
days <- 1+8*c(0:45)

yds <- 2000000+100000*(yr1-1)+c(0:yr2)*1000
T1 <- rep(days,2+(yr2-1))+rep(yds, each=46)

T1 <- as.data.frame(T1)

names(T1) <- "yrDay"

T1$yrDay <- as.integer(T1$yrDay)

yd1 <- 2000000+1000*(yr1-1)+49; yd2 <- 2000000+1000*yr2+57
T1 <- subset(T1,yrDay>yd1 & yrDay<yd?2)

Lat <- NULL; Lon<-NULL; TD<-T1
...... (remaining code from tgTD5c.Rcm that creates data in ySA)




Now that we can more easily create the fitted values using the fitLST.Rcm
function, we can create graphs of fitted values with forecasts using the
following program (aTD6.Rcm).

# aTD6.Rcm
# Analyse small samples of MODIS data from a specified place with natural cubic splines

rm(list=1s()) # remove redundant local variables
setwd("c:/world/Ist_data")

aa <-"tg" # select Tonga

yrl<-1;yr2<-21 # period of observation (first and last years)
gl <-c(1:9) # Tongakapu

02 <- ¢(21:19,4:6,11:13) # Ha'ano, Fotua, Lifuka, Tongakapu 1-3 + Ohonua
group <-1

if (group==1) sregs <- g1

If (group==2) sregs <- g2

source("../fitLST.Rcm")

ySA <- fitLST(aa,sregs,yrl,yr2)

str(ySA)

yrla<-1;yr2a<- 14 # assume known data have shorter span
ySA1 <- fitLST(aa,sregs,yrla,yr2a)

str(ySAL)

Fitted values and forecasts are now available in ySA and ySAL1
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NASA Data Empirical Forecasts

We now have tools to make empirical forecasts for day LST data.

But the coloured crosses shown on the right side of the graph on Slide 9 were
not put there by a computer program, but by examining the plots shown on the
bottom right of Slide 7 and adding them as shapes using PowerPoint.

So instead we'll do It for the Tongakapu sub-regions by adding the following
commands to aTD6.Rcm.

yrla<-1;yr2a<-14 # assume known data have shorter span

source("../fitLST.Rcm")

ySA1 <-fitLST(aa,sregs,yrla,yr2a)  # create data array ySA1

place <- ifelse(aa=="tg","Tonga",“Unknown")

titl <- paste(place,"Region", group,"(Tongakapu)")

nObs=21*46

nReg <- round((ncol(ySA)-4)/36)

yFit <- ySA[,(2+9*nReg+1):ncol(ySA)]

yFitl <- ySA1[,(2+9*nReg+1):ncol(ySAl)]

gpllLabs <- ¢("Kolovai","Nukunuku","Nuku'alofa","Kolonga", "Niutoua", "Houma",
"Vaini","Mua","Fua‘amotu")




The following further commands in aTD6.Rcm will create a graph of results.

windows(12,10)
par(mfrow=c(3,3),las=1,mar=c(0,0.5,0.5,0.3),0ma=c(3,3,2,1),tcl=0.2,mgp=c(1.1,0.1,0))
yF <- yFit[,c(2,3*c(1:9))] # select 3-knot fits

yF1 <-yFitl[,c(2,3*c(1:9))]
ymin <- min(yF[,2:10]); ymin1 <- min(yF1[,2:10])
ymax <- max(yF[,2:10]); ymaxl <- max(yF1[,2:10])
ymin <- min(ymin,ymin1); ymax <- max(ymax,ymax1)
ylm <- ¢c(ymin,ymax); xIm <- ¢(0,max(yF$t))
ylab <- expression(paste("LST.Day (",degree,"C)",sep=""))
for (jin c(1:9)) {
plot(NA,xlim=xIm,ylim=yIm,type="[",xaxt=
abline(h=c(0:60)/2,col=8)
if (j==1) mtext(side=3,line=-0.05,adj=-0.3,ylab,cex=0.9)
if (j==2) mtext(side=3,line=0.1,adj=1,"Forecast Errors using 3-Knot Spline Prediction",cex=0.9)
if (j==3) mtext(side=3,line=0.1,adj=1,titl,cex=0.9)
if (] %in% c(1,4,7)) axis(side=2,cex.axis=1.1)
if (j>6) axis(side=1,at=c(0:6)/2,lab=c(0:6)*5,cex.axis=1.1)
if (j==8) axis(side=1,padj=1.4,at=1.51,lab="Year after 2000",tcl=0,cex.axis=1.4)
abline(v=0.7*c(1:4),col= 8)
points(yF$t,yF[j+1],type="I",col=2,Ity=3,lwd=2)
points(yF$t[1:966],yF[1: 966,]+1] type="1",col=2,lwd=2)
points(yF1$t,yF1[ j+1],type="I",lty=3,lwd=2)
points(yF1$t[1:644],yF1[1:644 j+1] type="I", lwd=2)
(
(c
(

=" ylab="")

points(2.1,yF[966,j+1],pch=4,cex=1.6)

points(c(2.1,2.1), (yF[966 j+1] yF1[966,j+1]),type="I",col=2,lwd=2)

points(2.1 yF1[966,J+1] cex=1.4)

legend( "topleft", bty="n",gplLabs]j],cex=1.3)

if (j==3) Iegend("bottomleft",inset:c(0.0l,0.0l),bg:"ivory",Ieg:c("Forecast","Prediction"),pch:c(1,4),cex:1.2)
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This graph appears when the program is executed. Blue vertical lines denote
errors between predictions from fitting 3-knot splines to known outcomes and
forecasts from extending 3-knot splines to data observed 7 years earlier.
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NASA Data Take-Home Message

In this session we continued applying basic data analytic methods to
samples of daytime land surface temperature remote sensing data reported
from Earth-orbiting satellites from March 2000 to February 2021.

We focused on using a 3-knot natural cubic spline to fit daytime land surface
temperature trends and to provide forecasts of future patterns up to 7 years

ahead. We did this by using data 7 years earlier to predict the most recent 7
years and thus provide forecasting error bounds.

And we used computer functions to package analysis programs that simplify
visual presentation of results.

These methods require extensive further assessment and improvement
using global climate data available from NASA.

Please email me at don.mcneil@mg.edu.au if you'd like to work with us on
this research topic.

15 Thank you for your patience. Hope to see you again before too long!
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