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NASA Data
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The Terra Satellitehttp://st.sat.psu.ac.th/seminar/ipb/pdfs/bogorRS1.pdf

We’ll use remote sensing Land Surface 
Temperature (LST) data recorded by 
NASA satellites to illustrate data analytic 
methods. The data are free and cover all 
land on our planet.
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NASA Data Downloading Land Surface Temperature (LST) Data
To download MODIS data, go to https://modis.ornl.gov/globalsubset/ .

You’ll need to register by clicking 
on the “Sign in” button and 
following instructions to specify a 
valid password. After doing this 
successfully, the button will 
change to “Sign out”.

https://modis.ornl.gov/globalsubset/
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To download LST data, you need to select the product MOD11A2 instead of 
the default (MOD13Q1), and then click on the “Delete All” button to change 
the default location (Oak Ridge in Tennessee) to the centre of the data pixel.

The default subset size is 3 x 3, which 
corresponds to 49 pixels in a 7 by 7 array 
with approximate area 42 km2.



If you specify latitude 6.562 
and longitude 100.89 and click 
on “Add Location” the picture 
below will appear showing the 
area covered by the 49 pixels.
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Finally, scroll down 
and click on the 
“Submit Order” 
button to place 
your order.

When the order arrives, click on the file name 
and then “filtered_scaled_LST_Day_1km.csv” 
to get daytime LST data as a CSV file.



The data are stored as a CSV text file in a table with 55 columns and as many 
rows as there are 8-day periods from day 49 in year 2000 until the latest date 
for which data from the satellite have been processed.
Column 3 specifies the dates of successive measurements and column 4 
contains the latitude and longitude in each row.
Columns 7 to 55 specify mean Land Surface Temperatures in degrees Kelvin 
within each pixel at west-to-east longitudes and north-to-south latitude bands.
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NASA Data Data Structure & Study Design



This is just one sample of data from a much larger population.
This population covers the land area of the whole world, which an Internet 
search tells us is just under 149 million square kilometers.
Samples of area 42 km2 give population size 149,000,000/42 = 3,547 million.
But to find out how LST has changed over the whole planet, we don’t need to 
analyze all these data. Opinion pollsters survey large populations accurately 
using sample sizes of 1000 or less.
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An unbiased sample should cover the 
whole population, ensuring that all 
different components are included.
We could do this by making a regular 
grid of points over the Earth’s surface, 
spacing sample points equally around 
latitude bands, themselves spaced at 
constant distances apart.
This Europe/Asia map has 450 points, 
each representing similar-sized areas.
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The grid map for Europe and Asia can be divided into 50 contiguous regions
each containing a sub-sample of nine sub-regions, where sub-regions are 
defined as arrays containing 49 pixels similar to that shown on Slide 7.

0

The map on the right shows a blue-
ringed region containing nine sub-
regions in Thailand, Laos, Myanmar, 
Cambodia, Thailand, Vietnam, West 
Malaysia and Singapore.
We’ll use LST data in this sample to 
illustrate data analytic methods.
This will involve graphing the seasonal 
patterns, fitting models to these curves, 
seasonally-adjusting them to create 
time series of temperature trends, and 
fitting further models to compare and 
forecast global warming trends.



These graphs show seasonal patterns for the nine sub-regions. You can 
create them by executing the code up to #---------pause1 in the R program 
iaTD5.Rcm with CSV data files ia53-ia54, ia56-ia58, and ia60-ia63.  
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NASA Data Linear Regression and Spline Forecasts

9: Singapore8: Songkla7: Ho Chi Min
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Time gaps between 
observations are 8 
days except after 
day 361 (5 days or 6 
days in a leap year).
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Red curves denote natural cubic spline functions with eight knots (shown as 
the blue plus-signs) fitted to the seasonal patterns. A boundary condition is 
needed to make slopes match at end-points. To create this graph, insert a #
(comment) symbol before the statement on line 3 (showSpline==“no”).

Extensive 
data testing 
on LST data 
suggests that 
eight knots 
are sufficient, 
but fewer 
knots are 
needed in 
the middle 
range where 
most missing 
values occur.
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yy <- as.data.frame(yt[,j+1]) # LST values for subregion j
names(yy) <- "y1"
yy$x <- as.integer(doy) # day of year
x <- yy$x 
kn <- c(10,40,80,130,240,290,330,360) # spline knot locations
p <- length(kn)
d1 <- kn[p]-kn[p-1]; d2 <- kn[p-1]-kn[p-2]; d3 <- kn[p]-kn[p-2]
for (k in c(1:(p-3))) {

sk <- ifelse(x>kn[k],(x-kn[k])^3,0)
sk <- sk-((kn[p]-kn[k])*(kn[p-1]-kn[k])/(d3*d2))*ifelse(x>kn[p-2],(x-kn[p-2])^3,0)
sk <- sk+((kn[p]-kn[k])*(kn[p-2]-kn[k])/(d1*d2))*ifelse(x>kn[p-1],(x-kn[p-1])^3,0)
sk <- sk-((kn[p-2]-kn[k])*(kn[p-1]-kn[k])/(d3*d1))*ifelse(x>kn[p],(x-kn[p])^3,0)
yy[,(k+2)] <- sk
names(yy)[k+2] <- paste("s",k,sep="")

}
mod1 <- lm(data=yy,y1~x+s1+s2+s3+s4+s5) # fit linear model for p=8

y = a + bx + ∑ck sk(x)
k=1

p-3
Linear Regression Model to fit Seasonal Pattern using Natural Spline

where  sk(x) = (x-xk)3 - (xp-xk)(xp-1-xk)
d3d2

(xp-xk)(xp-2-xk)(x-xp-2)3 + d1d2
(x-xp-1)3  - (xp-2-xk)(xp-1-xk)

d3d1
(x-xp)3,

(three boundary conditions) x+= max(x,0), and d1 = xp-xp-1, d2 = xp-1-xp-2, d3 = xp-xp-2 .
+ + + +

Formula (linear function of a, b, c1, c2 …,cp-3)

Computer Program
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Choice of Number of Spline Knots

The knots cover the range of the data, so extreme knots correspond to the 
minimum and maximum time points.
We always use natural splines, defined as piecewise cubic functions that are 
linear beyond the range of the data. With two boundary conditions needed to 
make the function linear outside the data range, the formula is as follows.
y = a + bx + ∑ck sk(x)

p-2

k=1
where  sk(x) = (x-xk)3 - (xp-xk)

d1+ (x-xp-1)3 ++
(xp-1-xk)

d1
(x-xp)3   and d1 = xp-xp-1.+

With only two knots, the formula is y = a + bx, just a straight line.
With three knots, the spline has three parameters, like a quadratic, but this 
function is more useful in practice because its forecasts are linear, whereas 
forecasts based on quadratics tend to overshoot or undershoot data.
With more than three knots, splines can detect periodic waves in data, and 
might provide better short-term forecasts, but are less accurate for long-term 
forecasts because they tend to increase or decrease too rapidly, as the next 
slide shows.
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Red curves here denote natural cubic spline functions with three equispaced 
knots at years 0, 10.5 and 21 fitted to season-adjusted time series patterns. 
Fitted splines on the right have 2, 3 and 4 knots and corresponding forecasts.
To create this graph, run the remaining lines in the iaTD5.Rcm program.
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Prediction after using the lm( ) Function in R
Suppose that a data table yy contains a set of columns xx containing 
predictor variables for an outcome of interest and another column y1
containing corresponding values of the outcome variable. The R program 
listed on Slide 13 gives an example where xx contains five predictors.
The command mod1 <- lm(data=yy,y1~x+s1+s2+s3+s4+s5) fits a linear 
regression model and stores results in mod1, including fitted values that you 
can summarise using summary(mod1$fit). However, if there are missing 
values in the outcome these values are also absent from the list of fitted 
values, even though regression models are designed to predict them. 
Climate data reported by NASA satellites have lots of missing values, and 
even small proportions of missing data can substantially distort results in 
multivariate analysis, so a method is needed to impute them.
The predict( ) function in R can do this, simply by using a command such as 
fv <- predict(mod1,yy) instead of fv <- mod1$fit . And it can also be used to 
create forecasts when analyzing time series data, such as those shown in 
the panels on the right of the graph on Slide 15 where the fitted spline 
functions are extended by 10.5 years into the future.
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Acceleration
The results shown in the plots on Slide 15 show substantial variation among 
the nine sub-regions sampled. Three sub-regions show statistically significant 
decreases in daytime LST, one shows a statistically significant increase, and 
the other six show no conclusive evidence of change over the 21-year period. 
While this sample is too small to allow us to make global conclusions, the 
method can be applied to all sub-regions in a grid covering the whole planet, 
and we’ll do this next. But in doing so, other questions arise, and more 
extensive methods are needed.
For example, we could ask if LST increase is accelerating or decelerating. This 
question can be addressed by fitting splines with three knots and assessing 
whether the slope of the spline at the end of the observation period is greater 
or less than its initial slope. The answers to this question for our sample of 
nine sub-regions are seen in the numbers associated with the Acceleration:
legend that shows the increase in the estimated LST increase per decade over 
the 21 year period and its p-value for testing the null hypothesis of no change. 
We see that three sub-regions decelerated and the remaining six showed no 
conclusive evidence of change.
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NASA Data Correlation and Multivariate Regression
Time Series Correlation

Regression models require statistical assumptions including independence of 
errors. For time series data where a model separates the data into a signal 
containing the available information and a series of residual errors, these 
errors may be correlated, in which case this autocorrelation structure also 
needs to be addressed. 
The arima( ) function in R can be used to fit a regression model that takes 
such autocorrelation structure into account. For example, to fit a model with 
two auto regression parameters with predictor variables in xxj, the statement 

zj1 <- arima(yyj,order=c(2,0,0),xreg=xxj)
may be used, where xxj contains the terms in a spline function with two, three 
or four knots as defined on Slide 14. For two knots xxj is just x, for three knots 
it comprises x and s1(x), and for three knots it contains the three columns x, 
s1(x) and s2(x). For the two-knot model, estimates for the auto regression 
parameters with their standard errors bracketed are shown on Slide 15 as ar1
and ar2.
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Multivariate Regression
So far we have focused on fitting regression models to average values of land 
surface temperatures within a specified sub-region. But if we want to know 
what is happening in a larger region such as the whole area within the blue 
ring shown on Slide 11, the results from the nine sampled sub-regions need to 
be aggregated in some way. Computing the average of the nine component 
estimates provides an answer, but unless these components are mutually 
independent, its standard error is not easily calculated. 
It turns out that most climate variables are spatially correlated, even when 
hundreds of kilometers apart. However, correlated multivariate outcomes in 
regression models can be handled straightforwardly using multivariate linear 
regression, and the lm( ) function in R does this by specifying the outcome 
variable as a matrix rather than a single column. For example, the iaTD5.Rcm
program uses the statement  lm(as.matrix(ySa)~ySA$t[1:nObs]) -> mod to 
do this, where ySa contains the nine season-adjusted LST variables (also 
filtered to remove time series autocorrelation using the arima( ) function).
We use this method to analyze LST increase and acceleration within regions.
Standard errors for average LST increases in regions are then computed from 
a variance-covariance matrix (an attribute of mod).



NASA Data
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Graphs of Models with Forecasts

These graphs show three fitted models for each of nine sub-regions in seven 
regions of the south Asian continent, and forecasts up to 10.5 years ahead.
z values are based on statistical tests of the null hypothesis that there is no 
overall daytime LST increase in a region, assuming that increases in sub-
regions of a region are the same. Decreases occurred in five regions, one 
region increase, and one region showed a likely increase (z between 1 & 1.96).
zAc values result from similar tests on acceleration. Two regions decelerated 
and one region accelerated.
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NASA Data Schematic Maps of Regions and Sub-regions
This map shows daytime LST increases for seven regions in the south of 
continental Asia, including Pakistan, India, Nepal & Bhutan, Bangladesh and 
seven ASEAN countries.

With only 63 sub-regions 
in the sample, it is not 
large enough to make 
firm conclusions.
However, the sample size 
could be increased by 
reducing the distances 
between sub-regions, and 
it will be interesting see 
corresponding results.
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To summarize, we have applied basic data analytic methods to a sample of 
daytime land surface temperature remote sensing data reported from Earth-
orbiting satellites from March 2000 to February 2021. The methods involve 
relatively simple regression models and don’t require complex programs. 
They just use the base R software system, which is freely available and open 
source, and don’t require any additional libraries.
Our sample is too small and possibly too short in duration to say conclusively 
how rapid or widespread global warming is. But with increased sample sizes 
and further time, results will become clearer. Within a few months, we’ll have 
another year of data.
Next week we’ll extend the sample to include the whole of Europe and Asia, 
and other continents and islands around the world.
Please email me at don.mcneil@mq.edu.au if you’d like to work with us on 
this important research topic.

Thank you for your patience. Hope to see you next week!

NASA Data Take-Home Message

mailto:don.mcneil@mq.edu.au
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NASA Data
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Recap of Session 1

Last week we applied basic data analytic methods to land surface temperature 

(LST) data from Earth-orbiting satellites recorded from March 2000 to February 

2021 at 8-day intervals from sub-regions each covering 7 x7 pixel arrays (area 

42 km2) downloaded from a NASA website. The sample comprised just nine 

sub-regions taken from a regular grid of 450 similar sub-regions covering the

Europe/Asia continental land mass.

Using a linear regression model to 

estimate LST increase in this region, 

the z-value was -2.191, indicating a 

statistically significant decrease in 

day land surface temperature.

But is a sample 

of nine large 

enough to be 

conclusive?
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This graph shows time series plots of season-adjusted day LST in the nine sub-

regions as shown on Slide 15 from last week’s session. R-squared statistics are 

of minor relevance so are not shown. P-values are much more important.

Surin Southern Laos Southern Myanmar

Trat South-East Cambodia Phang Nga

Southern Vietnam Songkla Singapore
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The size of a sample does not depend on the population size. Provided that 

the sample is representative of the population and includes its different 

components in proportion to their presence in the population, a sample just 

needs to be large enough to give sufficiently precise estimates.

It’s quite possible that a sample of nine is large enough to provide a precise 

estimate. This is true when all members of a population are very similar, like 

grains of sand on a beach. But in other situations, such as stars in the night 

sky that include dwarfs and giants, where there is large variation between 

different members of the population, the sample size needs to be much larger.

The grid we have used for the Europe/Asia continent uses distances of 420 

pixel widths (360.0 km) between successive points around latitude bands and 

315 pixel widths (270.0 km) between successive points around longitude great 

circles. These numbers are divisible by 3, 5 and 7, making it easy to pack sub-

regions more tightly within a study area of interest. Let’s see what happens 

when these gaps are reduced to 140 and 105 pixel widths, respectively.

NASA Data Increasing the Sample Size
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This map shows how daytime land surface temperature increases varied in 

three eastern regions of the south Asian group, as shown on Slide 21 from last 

week’s session. Results for the two easternmost regions differ substantially.

In east India & northern Myanmar, 

day LST “probably” increased.

In Bangladesh, northern areas of 

Thailand, Laos, Thailand and 

Vietnam, day LST increased.

But in the south of this area, day 

LST decreased.

The white dots show a denser 

grid that expands the number of 

sub-regions in this southern 

region from 9 to 63 by inserting 

two additional grid points between 

neighbouring pairs.
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New Results for an ASEAN RegionNASA Data

The results for the south-eastern region in the south Asian group with the 

sample size increased to 63 (right panel) are quite different to those for the 

same region with sample size nine (left panel). How can this be explained?



6

NASA Data Confidence Intervals and Forest Plots

Confidence intervals (CIs) provide an explanation. The “smart” regression 
model we’re using to estimate LST increases also provides estimates of 
standard errors, which in turn tell us how accurate these results are.

A 95% confidence interval is an interval that contains an unknown population 
parameter with probability 0.95. If model assumptions are satisfied, to a close 
approximation these intervals have width twice the standard error on each 
side of the model estimate.

Here’s a graph (known as a forest 
plot) of 95% CIs for LST increases 
in the nine sub-regions, with an 
overall 95% CI obtained by 
aggregating all nine samples.

This overall CI is based on a 
homogeneity assumption that 
the population parameter is the 
same in each sub-region.
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An important rule of thumb in statistics is that the standard error (SE) of an 

estimate decreases in proportion to the square root of the sample size (n). 

This leads to the simple formula SE = sd /√n, where sd is the standard 

deviation of a single population member.

So for a sample of nine, this rule 
suggests that a CI for the overall 
average should be one-third the 
length of that for a single 
component, as our forest plot 
confirms, except for Singapore.

But nearly half of the data for 
Singapore are missing, so its 
confidence interval is wider.

So the homogeneity assumption is highly questionable for these data. The 

upper three sub-regions on the plot have higher day LST increases than the 

middle three, and this fact strongly suggests that the result is wrong.



When the number of sub-

regions in the study area is 

increased to 63, the forest plot 

is more informative.

Confidence intervals are again 

shown for sub-regions in each 

of the smaller regions together 

with their overall CI, as well as 

a CI based on aggregating all 

63 sub-regions. If we can now 

assume homogeneity of these 

increases (and this remains 

questionable), for the study 

area as a whole we see that 

day LST increased, in 

contrast to the original 

conclusion.
8

Red-circles 
denote original 
sub-regions. 
For most of 
them day LST 
decreased.

Southern Laos

Surin

S Myanmar

Trat

SE Cambodia

Phang-Nga
Songkla

Singapore

S Vietnam
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NASA Data Creating a Thematic Map

The program that creates graphs for regions similar to that shown on Slide 2 

(saTD5b.Rcm) also stores results in text files that can in turn be used to 

create thematic maps similar to those shown on Slide 5. The map on the left 

of this slide uses a sinusoidal polar projection that matches the nearly circular 

orbit of the Terra satellite. To create this map we need to use this projection. 

The method is described later in this session.

The map on the right of Slide 5 is simpler to create because it just uses 

longitude and latitude as Cartesian coordinates. The program is in the file 

seAsia.Rcm. It uses shape files for different countries stored as four 

variables named plotID, pointID, x and y in a database table. To create this 

map, the countries needed are Vietnam (plotID: 236), Cambodia (plotID 36), 

Thailand (plotID 213), West Malaysia (155.4), Myanmar (plotID 25), with 

some additional countries and islands. These data are stored in the file 

wsea.csv. The file saLSTinc.txt is created or updated when saTD5b.Rcm is 

executed.
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To test your programming skills, see if you can create the map below.

The steps are as follows.

1: Copy the program file seAsia.Rcm
and data files wsea.csv and  
saLSTinc.txt into your working
directory. If the name of this 
directory is not c:/world, edit
seAsia.Rcm by changing the 
statement setwd("c:/world") to 
contain this folder name.

2: Open R and copy the contents of
the file seAsia.Rcm into its 
command window. If the map 
appears, take a bow. 

You can tell your friends that you 
are a data science analytics 
programmer.
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Your next task is to create a similar 
map for Greenland & sampled 
western islands. Do this by copying 
greenland.Rcm and giLSTinc.txt. 
and executing  the Rcm file. 

But this map isn’t what the Terra
satellite sees, because longitudes 
near the poles are much closer 
together than those near the 
Equator.

The map below is what Terra sees. 

Grid points we’ve been using for our 
survey of day LST increases are 
shown, and are equispaced, unlike the 
same points in the map on the left. 
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MODIS climate data are stored as pixels on a spherical surface approximating 
that of the Earth. For land surface temperature, these pixels all have the same 
west-east and north-south span (925.7 meters) and are referred to as 1 square 
kilometer pixels even though their area is only 0.857 km2. They are grouped 
into tiles comprising arrays of 1200 x 1200 pixels into a sinusoidal tile grid. 
To identify  a specific pixel, four coordinates are used. The first two (v and h in

NASA Data Using a Sinusoidal Projection

https://modis-land.gsfc.nasa.gov/MODLAND_grid.html

the map on the left) denote the 

vertical and horizontal locations 

of the tile, and the second two 

(line and samp) denote 

vertical and horizontal pixel 

locations.

These coordinates can be 

converted to and from latitudes 

and longitudes using the URL
landweb.modaps.eosdis.nasa.gov/cgi-bin/developer/tilemap.cgi
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To create a map similar to what the Terra satellite sees, we use what we call a 

“sinusoidal polar” projection. This is essentially the same as the sinusoidal tile 

grid described on Slide 12, but with its origin centered at a user-specified 

location that could be anywhere on the Earth’s surface. For example, the map 

shown on the right of Slide 11 has its origin at latitude 45 degrees north and 

longitude 80 degrees west of Greenwich. This feature allows us to create a 

map that looks directly down from outer space to the specified location.

Here’s what the R code looks like. It just involves trigonometric 

transformations of the latitudes and longitudes.

phd0 <- 105; thd0 <- 50

wi02 <- subset (wc,plotID==86) # Greenland

xx <- wi02$x; yy <- wi02$y 

ph <- (xx+phd0)*pi/180; th <- yy*pi/180

xC <- cos(th)*cos (ph); yC <- cos(th)*sin(ph);  zC <- sin(th)

xCR <- cos(th0)*xC + sin(th0)* zC; yCR <- yC; zCR <- -sin(th0)*xC + cos(th0)*zC

lonR <- 90-(180/pi)*atan2( xCR,yCR); latR <- (180/pi)* asin (zCR)

lonR <- lonR*cos ( latR*pi/180)

polygon( lonR, latR , col= rclr , border= gClr )
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Your next task is to use the program greenlandPolarA.Rcm to create this 

corresponding map for Greenland and the western islands sampled in the 

grid. You’ll also need to get a copy of the text file wgis.csv that contains 

boundaries for Greenland and these western islands that are in the global 

grid sample.

Region 1
Region 3

Region 2

We’ve created four regions 

from the 36 grid points that 

fall upon land in Greenland 

and the north Canadian 

islands. These islands 

comprise Ellesmere, Devon, 

Melville and North Victoria in 

Region 1 and Baffin, 

Somerset, Southampton and 

South Victoria in Region 4.

To include Canada, you’ll also 

need the file wca.csv.

Region 4
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NASA Data Graphs of Models with Forecasts

Seasonal patterns for day LST 
in north Greenland & Ellesmere 
Island are much more variable 
than those in tropical SE Asia.

Time series for aggregated sub-

regions in this 
region show a 
likely increase, 
with  z = 1.78, 
but day LST 
decelerated
(zAc = -2.4), 
and forecasts 
suggest that 
this pattern will 
continue for 
several years.

Region 1

N Ellesmere

N Greenland
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Climate scientists are concerned because global sea level will rise by 7.2 
meters if its glaciers melt. But these plots show that day LST in central Green-
land has been stable over the last 21 years, and is forecast to remain so.

Region 2: Central Greenland
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These results complement those for the northern areas of Greenland, again 
showing stable day land surface temperatures with similar forecasts.

Region 3: Southern Greenland
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Region 4: Baffin, South Victoria, Somerset & Southampton Islands

In other major islands north of Canada day land surface temperatures did not 
appear to increase over the last 21 years. But lack of homogeneity suggests 
that this sample is too small to provide conclusive results, and that further 
analysis similar to what we did for the South-East Asian region is needed.
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To summarize, we have continued applying basic data analytic methods to 

samples of daytime land surface temperature remote sensing data reported 

from Earth-orbiting satellites from March 2000 to February 2021. 

In particular, we found that it is important to ensure that a population sample 

is homogeneous. If not, its size needs to be increased to make sure that all 

different components of the population are covered.

We also learnt how to use a simple trigonometric transformation of 

latitude/longitude coordinates to create maps that do not distort the shape of 

the area on the Earth’s surface as viewed from a satellite.

We also studied land surface temperature increases and forecasts in 

Greenland and north Canadian islands.

Please email me at don.mcneil@mq.edu.au if you’d like to work with us on 

this important research topic.

Thank you for your patience. Hope to see you next week!

NASA Data Take-Home Message

mailto:don.mcneil@mq.edu.au
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NASA Data
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Recap of Session 2
Last week we continued to apply basic data analytic methods to land surface 
temperature (LST) data downloaded from a NASA website. We addressed the 
question “how big a sample is needed?”, showing that when the homogeneity 
assumption fails a much larger sample may be needed.
We showed how forest plots are 
informative when aggregating 
information from different samples 
taken from a population.
We used a sinusoidal polar 
projection to show what is really 
seen by a satellite above our planet.
We studied daytime LST increase & 
acceleration in Greenland and major 
north Canadian islands. Is Region 4 
homogeneous? We’ll find out today.



2

Our climate research has focused largely on detailed blanket coverage of small 
areas, such as Nepal (Ira), Phuket province (Noppachai), south Asian islands 
(Tofan & Munawar) and Taiwan (Sahidan). But in an inspiring lecture at Hat Yai 
campus of PSU on 8 February 2018 Nobel chemistry laureate Fraser Stoddart 
convincingly advised us to “tackle big problems”.

NASA Data Blanket Coverage: Data from Tonga

NASA climate data availability makes this possible, 
simply by taking a sufficiently large sample of the 
whole world. The regular grid we’re using covers all 
land on the planet using a sample of no more than 
2000 sub-regions each having area 42 km2 and 
separated by a few hundred kilometers.
But if an area of interest is sufficiently small, we can 
still cover it with no gaps. Tonga, a group of islands 
in the Pacific ravaged recently by a tsunami caused 
by an undersea volcano, is such a place.

Its main island covers just 240 km2. Tongakapu
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Here’s a map of nine sub-regions 
covering most of Tongakapu island. 
You can create this map by running 
the R program tongaMap.Rcm that 
reads files wtg.csv & tg1LSTpInc.txt.
The southernmost region covers a lot 
of water so most of its day LST data 
cannot be measured. 
Note, however, that as long as at least 
one of the 49 pixels in each sub-
region has a detectable value of day 
LST on any given day, this provides a 
measure of the average day LST for 
the whole sub-region on that day, 
although measurement accuracy is 
consequently reduced.

Kolovai Nukunuku

Nuku’alofa

Kolonga

Niutoua

Fua’amotu

Mua

Vaini

Houma
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These graphs show results for the 
nine sub-regions of Tongakapu 
island mapped on Slide 3.
Given its tropical zone location, 
seasonal variation is not large.
Fitted models show very similar 
patterns for all nine locations, with 
no evidence of change except for

the southernmost 
sub-region, where a 
“likely” day LST 
decrease occurred. 
No 3-knot spline fit 
has a p-value below 
0.05, but for the 4-
knot spline fit sub-
regions 4, 5, 6, 8 & 9 
are all statistically 
significant.

Kolovai Nukunuku Nuku’alofa

Kolonga Niutoua Houma

Vaini Mua Fua’amotu
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These graphs show results from four more islands in Tonga (Ha’ano, Fortua 
and Lifuka in the northern group and Ohonua south of Tongakapu), together 
with those for Tongakapu already shown in the central panel of Slide 4.

Tongakapu

These graphs show 
deceleration in day 
LST change for the 
three islands in the 
northern group.
The 4-knot fits are 
quite similar, with 
most showing a 20-
year cycle, but more 
extensive data are 
needed to confirm 
this pattern.

The northern 
island chain  
has all p-values 
below 0.05 for 
both 3- and 4-
knot spline fits.
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A forest plots of day LST increases in these 
island sub-regions of Tonga appears to 
satisfy the homogeneity assumption, with 
the possible exception of Ha’ano in the 
northern chain. Results suggest “likely 
decrease” (z = -1.7). 

z: -1.698Note that acceleration, like what a car does 
when the driver puts the foot down, is the 
gain in increase per unit time, in this case 
degrees Celsius increase per decade per 
decade (/decade2). This can be estimated 
from the data using the 3-knot spline, 
defined in Slide 14 of Zoom 1 as 

. The spline s1(x) reduces 
to the linear function d+3cx beyond the 
third knot, so the acceleration per decade2

is obtained by multiplying the estimate of c 
by 3 and dividing by 2.1 (decades 
observed).

y = a + b x + c s1(x)

zAc: -1.662

Get tg2LSTpInc.txt and run 
tongaCIplots.Rcm to create these.
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Last week we got more accurate results for an inhomogeneous region in 
South-East Asia by splitting it into seven smaller regions each containing nine 
sub-regions. As a result, we concluded that day LST in the region overall was 

“likely increase”, not “decrease”.

NASA Data Results for Larger Sample in Baffin Island Region

We’ll now use the same method to re-examine day LST change in region 
comprising Baffin Island and islands to its west in northern Canada.

Overall 
Decrease

Overall Likely
Increase
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The graph below shows that in Region 4 (comprising Baffin, south Victoria and 
some other islands in northern Canada) day LST was stable from 2000-2020, 
with z-value 0.979. 
Note that we can insert two extra sub-regions between each neighbouring pair. 

Region 1
Region 2

Region 3

Region 4

Baffin
Island

Mainland Canada

This is 
expected to 
increase 
the sample 
by a factor 
of seven, 
giving rise 
to 7 smaller 
regions and 
covering 
additional 
islands.
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A schematic map shows “likely 
increase” in three of the seven 
smaller regions and “stable” day 
LST in the other four regions, 
corresponding to an overall z-
value of 1.31 (“likely increase”)

Google Earth Map

Nine sub-regions: z = 0.98

63 sub-regions 
in seven regions:
Overall z = 1.31

This compares 
with z = 0.98 
(“stable” LST) 
in the original 
analysis.

Get wgis.csv, igLSTinc.txt, 
giLSYinc.txt and run 
greenlandPolarC.Rcm to 
create this map.
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Plots of fitted models show 
wide variation for day LST 
increase and acceleration in 
different regions.

North-West      North-East         Far West Central East Upper South     South-West 

Nine sub-regions: z = 0.98

63 sub-regions in seven regions: Overall z = 1.31



11

Confidence intervals also highlight wide variation but no 
indication of inhomogeneity. We see that Victoria Island 
need not have been divided. The next step would be to 
repeat this analysis for Region 1, including more islands.

S Somerset

SW Victoria

NW Baffin

E Baffin
SE Baffin

Southampton

SW Baffin

SE Victoria

C Baffin

Now run 
baffinCIplots.Rcm 
to create these 
graphs.



12

The code to create a map of what the Terra satellite sees is repeated many 
times in the program greenlandPolarA.Rcm that we used to display the map 
on Slide 9. It contains the following R commands, where wa is a data frame 
containing the four column variables plotID, pointID, x and y to be mapped.
wa$x <- wa$x+phd0 # longitudes with origin at phd0
ph <- wa$x*pi/180 # converted to radians
th <- wa$y*pi/180 # latitudes in radians
xC <- cos(th)*cos(ph) # their Cartesian x coordinates 
yC <- cos(th)*sin(ph) # their Cartesian y coordinates 
zC <- sin(th) # their Cartesian z coordinates

xCR <- cos(th0)*xC+sin(th0)*zC # Step 1: rotate around axis through Equator
yCR <- yC
zCR <- -sin(th0)*xC+cos(th0)*zC

lon <- 90-(180/pi)*atan2(xCR,yCR) # Step 2: convert back to longitudes and latitudes
lat <- (180/pi)*asin(zCR)
lon <- lon*cos( lat*pi/180)

NASA Data Using a Function to simplify a Computer Program
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We can create a function called spp( ), say, that creates the sinusoidal polar 
longitude and latitude coordinates corresponding to x and y as follows.
spp <- function(x,y,phd0,thd0) { # sinusoidal polar projection function 
ph <- (x+phd0)*pi/180; th <- y*pi/180
xC <- cos(th)*cos(ph); yC <- cos(th)*sin(ph);  zC <- sin(th)
xCR <- cos(th0)*xC+sin(th0)*zC; yCR <- yC; zCR <- -sin(th0)*xC+cos(th0)*zC
lonR <- 90-(180/pi)*atan2(xCR,yCR); latR <- (180/pi)*asin(zCR)
lonR <- lonR*cos(latR*pi/180)
cbind(lonR, latR)
}

Here’s how it works.  Suppose wgis.csv is a CSV file in your working 
directory that contains boundaries for countries or islands you wish to map. 
Three of these places have plotIDs 35.166, 35.124 and 35.131. The origin 
for your map is at longitude 90 and latitude 50 degrees. 
read.csv(“wgis.csv”,header=TRUE,as.is=TRUE) -> wc
phd0 <- 90; thd0 <- 50
wiz <- subset(wc, plotID %in% c(35.166,35.124,35.131))
lonlat <- spp(wiz$x,wiz$y,phd0,thd0)
polygon(lonlat[,1],lonlat[,2],border=1,col=rclr)
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NASA Data Forecasts based on Empirical Results

Climate trends are difficult to forecast. Nobody has yet 
come up with a theory that gives accurate results.
So instead, we’ll just use the 21 years of NASA data to 
see if we can forecast a few years ahead, say 6 years.
The graphs on the right show fitted spline curves to 
season-adjusted day LST for the nine sub-regions of 
Central Baffin Island, with forecasts obtained simply by 
projecting the spline curves 10.5 years ahead.
Assume we have data for just 15 years and we fit a 
spline model to these data and use it to forecast the 
fitted value 6 years ahead, and compare the result with 
the known fitted value. Using a sizable sample of sub-
regions, we can use the distribution of these errors to 
calculate a 95% confidence interval.
This is our empirical forecasting method. 
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However, this is easier said than done. The program we have been using 
assumes precisely 21 years of data, and would need to be generalized to 
allow different time spans. And it needs to be applied to sufficiently large 
samples of homogeneous sub-regions to achieve accurate forecasts. As we 
have seen different grid dimensions are needed in different areas of the world. 
And the amount of data is quite large.
Given that essentially the same program is used for all samples (iaTDb5.Rcm
for the south Asian sub-continent, giTDb5.Rcm for north American islands, 
tgTDb5.Rcm for Tonga, etc.) it would be better to turn this program into a 
function, with arguments specifying parameters that specify the sample 
identity, the observation and forecast periods, and other relevant choices.
Once this is done, the function can be stored as an R command file 
(tdb5.Rcm, say) in a working directory and used in a another program simply 
by executing the statement source(“tdb5.Rcm”) within that program. If you 
have been using R programs to make graphs of democratic confidence you 
will be familiar with this method, where the function dcis.Rcm is used.
Using this approach, we’ll show some empirical forecasts next week..
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In this session we continued applying basic data analytic methods to 
samples of daytime land surface temperature remote sensing data reported 
from Earth-orbiting satellites from March 2000 to February 2021. 
We saw that blanket coverage of all data in an area is feasible for small 
areas such as the Pacific islands of Tonga, where we found very similar 
trends in widely separated locations.
We also studied land surface temperature increases and forecasts in and 
around Baffin island, finding that results did not change very much when the 
sample size increased, in contrast to an area around southern Thailand.
And we saw how a user can create their own function to simplify computer 
programming, and we suggested how this approach could be used to 
facilitate empirical time series forecasting. Next week we’ll follow up on this.
Please email me at don.mcneil@mq.edu.au if you’d like to work with us on 
this research topic.

Thank you for your patience. Hope to see you next week!

NASA Data Take-Home Message

mailto:don.mcneil@mq.edu.au
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NASA Data
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Recap of Session 3
Last week we continued to apply data analytic 
methods to land surface temperature (LST) data 
downloaded from a NASA website, focusing on 
data from islands within the Arctic Circle above 
Canada and Tonga in the south Pacific ocean.

We also learnt how a computer 
function can simplify complex 
analysis, such as using natural 
cubic splines to analyse time 
series data.
In this session we’ll show how 
such functions can simplify 
empirical forecasting of time 
series data.
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In Session 1 we gave a formula for a natural spline, defined as a piecewise 
cubic function that is linear beyond the range of the data. Two boundary 
conditions are needed to achieve this linearity, and the formula is as follows.
y = a + bx + ∑ck sk(x),

p-2

k=1
where  sk(x) = (x-xk)3 - (xp-xk)

d+ (x-xp-1)3 ++
(xp-1-xk)

d (x-xp)3 , d = xp-xp-1 and x+ = x if x>0, 0 otherwise.+

Knots are at xk (k=1, 2,.., p). With only two knots, the formula is y = a + bx, a 
straight line. For three knots, the spline has three parameters, like a quadratic, 
but a natural spline is more useful in practice because its forecasts are linear, 
whereas forecasts based on quadratics tend to overshoot or undershoot data.
With p=3, the formula is y=a + bx+ c1 s1(x), where, after a little algebra, we get

s1(x) = x1{(x2 +x2x3+x3)-x2x3(x2+x3) -x1} + 3c1(x2-x1)(x3-x1) x  for x>x3.

Estimating Acceleration: The 3-Knot SplineNASA Data

3

This tells us that before the first knot (x1), y would increase at rate b, whereas 
after the last knot (x3), y would increase at rate b + 3c1(x2–x1)(x3-x1). So the 
increase in slope over the range of the data (x3-x1) is 3c1(x2-x1)(x3-x1).  
Consequently, the average acceleration over the data range is 3c1(x2–x1).

2 2
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For 21 years of data in the range (0, 2.1) decades, a natural cubic spline with 
three equispaced knots has x1 = 0, x2 = 1.05 and x3 = 2.1, so the acceleration 
for LST in degrees Centigrade per decade squared is thus (3×1.05)c, namely, 
3.15×c.
Note that this differs from the formula given on Slide 6 in Session 3, which 
seems to be incorrect.
We can do a simulation study to check the formula, as follows.
Note that a simulation study starts with an assumption about a population, and 
then takes a random unbiased sample from this population with the objective of 
comparing estimates of specific population parameters with their known values.
For time series data, we assume that after adjusting for seasonal patterns and 
autocorrelation, observed data y are determined by an additive model 
expressed as y = S + z, where S is a signal with known functional form and z is 
a sequence of independent and identically distributed normal random variables 
with mean 0 and constant standard deviation (white noise).

NASA Data A Simulation Study



4

Let’s assume that the signal for season-adjusted day LST in a sub-region of 
interest follows a symmetric quadratic function over the 21-year range with 
maximum 10.5oC after 10.5 years and minimum values 0oC at the beginning 
and end of this period. Also assume that the noise has standard deviation 1oC.
Here’s some code to simulate data observed at 8-day intervals (46 per year).

set.seed(12345) # ensure repeatability
x <- c(1:(46*32) )/460; nObs <- 46*21 # 21 (observed)+11 future years
z <- rnorm(nObs,0,1) # white noise with sd=1
S <- 10.5-(x[1:nObs]-10.5)^2/1.05 # quadratic signal
y <- S+z # data observed
y <- c(y, rep(NA,46*11)) # unknown future values
kn <- 2.1*c(0:2)/2; p <- length(kn) # three equispaced knots 
yy <- as.data.frame(cbind(y,x)) # database table
names(yy) <- c("y", "x") # variable names
d1 <- kn[p]-kn[p-1] # gap between last two knots
for (k in c(1:(p-2))) { # create spline function

sk <- ifelse(x>kn[k],(x-kn[k])^3,0)
sk <- sk-((kn[p]-kn[k])/d1)*ifelse(x>kn[p-1],(x-kn[p-1])^3,0)
sk <- sk+((kn[p-1]-kn[k])/d1)*ifelse(x>kn[p],(x-kn[p])^3,0)
yy[,(k+2)] <- sk
names(yy)[k+2] <- paste("s",k, sep="")

}
mod2 <- lm(data=yy,y~.) # fit linear model
summary(mod2) # display results

Given that p=3, this loop can be simplified to
sk <- ifelse(x>kn[1],(x-kn[1]^3,0)-

((kn[3]-kn[1])/d1)*ifelse(x>kn[2],(x-kn[2])^3,0)+
((kn[2]-kn[1])/d1*ifelse(x>kn[3],(x-kn[3])^3,0)
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These plots show results.
Estimated values are b = 1.44 
and c1 = -0.439, corresponding 
to initial increase in day LST oC 
per decade and acceleration     
3×(-0.439)×1.05 = -1.38 oC per 
decade2 over the data range. 
This acceleration corresponds to 
a decrease in slope of 1.38×2.1 
(2.9oC/decade2) for the 21-year 
period of observation, which 
matches the decrease from 1.44 
to -1.46 shown in the lower plot 
panel.

So the simulation study confirms the result shown on Slide 2 and shows that 
the formula given on Slide 6 in Session 3 is wrong.



You can run the following code in simulateTD.Rcm to do this simulation.
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windows(6,6)
par(mfrow=c(2,1), las=1,mar=c(1,0.5,2,0.3), oma=c(1.5,3,2,1),tcl =0.2,mgp=c(1.1,0.1,0))
plot( x, y,cex=0.2,xlim=c(-0.9,3.6), ylim=c(8,11), xlab="",ylab="")
ylab <- expression(paste(“ LST.Day (",degree ,"C)",sep=""))
mtext (side=3,line=-0.1,adj=-0.1,ylab)
mtext (side=3,line=0.1,adj=0.16,"Past")
mtext (side=3,line=0.1,adj=0.41,"Observation Period")
mtext (side=3,line=0.1,adj=0.84,"Future")
mtext (outer=T ,line=-0.5,adj=0.5,"Simulation Study")
abline (v=c(0,2.1))
points(x[1:nObs],fv[1:nObs],type="l", col=2,lwd=2)
fSp <- 1:(46*11) # future span
points(x[nObs +fSp],fv[nObs +fSp],type="l", col=2,lty=3,lwd=2)
nf <- length(fv); np <- length(fSp)
df <- 460*(fv[-1]-fv[-nf]) # model increase/decade
lg <- c("fitted model“ ,"forecast")
legend("bottomleft ", inset=c(0.01,0.01), lg , lwd=2,col=2,lty=c(1,3), bg="ivory")
plot(NA ,xlim=c(-0.9,3.6),ylim=c(-3,3),xlab="",ylab="")
points(x[-1][1:nObs-1], df[1:nObs-1],type="l", col=2,lwd=2)
points(x[-1][nObs-1+fSp],df[nObs-1+fSp],type="l“ ,col=2,lty=3,lwd=2)
mtext (side=3,line=0.1,adj=-0.13,"Model Increase/decade in Day LST")
mtext (side=1,line=1,adj=0.5,"Year after 2000")
abline (v=c(0,2.1))
text(0,df[1],round(df [1],2), adj=c(1,0.5))
text(3.2,df[nObs],round(df[nObs],2),adj =c(0,0.5))
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Recall that in Session 3 we showed how a computer function spp( ) uses a 
sinusoidal polar projection to create maps that show what landforms on the 
Earth really look like from outer space. 
Today we’ll create another computer function fitLST( ) that fits natural cubic 
splines to LST trends adjusted for seasonal patterns and autocorrelation. We 
already have programs that create corresponding graphs, so we can do this 
by deleting the commands that create the graphs.
For example, in Session 3 a program tgTD5b.Rcm created seasonal patterns 
and time series for sub-regions in Tongakapu Island, as shown below.

NASA Data Function to Fit a Model to LST Data
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The program tgTD5c.Rcm does this. It has two further integer parameters (yr1
and yr2) that specify the period of observed data, so if these values are 1 and 
21, say, the data from day 49 in year 2000 to day 49 in year 2021 are selected, 
and the result is the same as what tgTD5b.Rcm gives. However, if yr1 remains 
1 and yr2 is 14, the data extend from day 49 in year 2000 to day 49 in 2014.

This modification 
enables prediction of 
known fitted values, 
so forecasts can be 
checked. 
Graphs shown here 
are seasonal patterns 
for Tongakapu sub-
regions based on 
past data from 2000 
to 2014.
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Crosses show fitted values of 3-knot splines using data from 2008 to February 
2021, compared with forecasts using data up to 2014. Forecasts for sub-regions 
are all reasonably accurate, all within 0.4oC except for sub-region 4 that differs 
from the fitted value by 1oC. But 4-knot splines badly over-forecast.

×
××

×

×
×

×

×

×
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The function fitLST.Rcm applies code from tgTD5c.Rcm to sub-regions in 
other regions. Here’s how it does that.
# fitLST.Rcm # fit model to LST data in (yr1,yr2) years inclusive
fitLST <- function(aa,sregs,yr1,yr2) { # .. for region in place aa with sub-region IDs in sregs
ff <- list.files()
ffs <- ff[substr (ff,1,2)==aa & substr(ff,6,8)=="csv"]
ffs <- ffs[as.integer(substr (ffs,3,4)) %in% sregs]
nSubRegs <- length(sregs)
nRegs <- floor(nSubRegs/9);  subRegs <- sregs
days <- 1+8*c(0:45)
yds <- 2000000+100000*(yr1-1)+c(0:yr2)*1000
T1 <- rep(days,2+(yr2-1))+rep(yds ,each=46)
T1 <- as.data.frame(T1)
names(T1) <- "yrDay"
T1$yrDay <- as.integer(T1$yrDay)
yd1 <- 2000000+1000*(yr1-1)+49; yd2 <- 2000000+1000*yr2+57
T1 <- subset(T1,yrDay>yd1 & yrDay<yd2)
Lat <- NULL; Lon <- NULL; TD <- T1
…… (remaining code from tgTD5c.Rcm that creates data in ySA)
ySA
}
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Now that we can more easily create the fitted values using the fitLST.Rcm
function, we can create graphs of fitted values with forecasts using the 
following program (aTD6.Rcm).
# aTD6.Rcm
# Analyse small samples of MODIS data from a specified place with natural cubic splines

rm(list= ls ()) # remove redundant local variables
setwd("c:/world/ lst_data")
aa <- "tg" # select Tonga
yr1 <- 1; yr2 <- 21 # period of observation (first and last years)
g1 <- c(1:9) # Tongakapu
g2 <- c(21:19,4:6,11:13) # Ha'ano, Fotua, Lifuka,Tongakapu 1-3 + Ohonua
group <- 1
if (group==1) sregs <- g1
if (group==2) sregs <- g2
source("../fitLST.Rcm")
ySA <- fitLST(aa,sregs,yr1,yr2)
str (ySA)
yr1a <- 1; yr2a <- 14 # assume known data have shorter span
ySA1 <- fitLST(aa,sregs,yr1a,yr2a)
str (ySA1)

Fitted values and forecasts are now available in ySA and ySA1
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We now have tools to make empirical forecasts for day LST data.
But the coloured crosses shown on the right side of the graph on Slide 9 were 
not put there by a computer program, but by examining the plots shown on the 
bottom right of Slide 7 and adding them as shapes using PowerPoint.
So instead we’ll do it for the Tongakapu sub-regions by adding the following 
commands to aTD6.Rcm.
yr1a <- 1; yr2a <- 14 # assume known data have shorter span
source("../fitLST.Rcm")
ySA1 <- fitLST(aa,sregs,yr1a,yr2a) # create data array ySA1
place <- ifelse(aa=="tg","Tonga",“Unknown")
titl <- paste(place ,"Region",group,"(Tongakapu)")
nObs=21*46
nReg <- round((ncol(ySA)-4)/36)
yFit <- ySA[,(2+9*nReg+1):ncol(ySA)]
yFit1 <- ySA1[,(2+9*nReg+1):ncol(ySA1)]
gp1Labs <- c("Kolovai","Nukunuku","Nuku'alofa","Kolonga", "Niutoua", "Houma",

"Vaini","Mua","Fua'amotu")
…..

NASA Data Empirical Forecasts
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The following further commands in aTD6.Rcm will create a graph of results.
windows(12,10)
par(mfrow=c(3,3),las=1,mar=c(0,0.5,0.5,0.3),oma=c(3,3,2,1),tcl=0.2,mgp=c(1.1,0.1,0))
yF <- yFit[,c(2,3*c(1:9))] # select 3-knot fits
yF1 <- yFit1[,c(2,3*c(1:9))]
ymin <- min(yF[,2:10]); ymin1 <- min(yF1[,2:10])
ymax <- max(yF[,2:10]); ymax1 <- max(yF1[,2:10])
ymin <- min(ymin,ymin1); ymax <- max(ymax,ymax1)
ylm <- c(ymin,ymax); xlm <- c(0,max(yF$t))
ylab <- expression(paste("LST.Day (",degree,"C)",sep=""))
for (j in c(1:9)) {
plot(NA,xlim=xlm,ylim=ylm,type="l",xaxt="n",yaxt="n",xlab="",ylab="")
abline(h=c(0:60)/2,col=8)
if (j==1) mtext(side=3,line=-0.05,adj=-0.3,ylab,cex=0.9)
if (j==2) mtext(side=3,line=0.1,adj=1,"Forecast Errors using 3-Knot Spline Prediction",cex=0.9)
if (j==3) mtext(side=3,line=0.1,adj=1,titl,cex=0.9)
if (j %in% c(1,4,7)) axis(side=2,cex.axis=1.1)
if (j>6) axis(side=1,at=c(0:6)/2,lab=c(0:6)*5,cex.axis=1.1)
if (j==8) axis(side=1,padj=1.4,at=1.51,lab="Year after 2000",tcl=0,cex.axis=1.4)
abline(v=0.7*c(1:4),col=8)
points(yF$t,yF[,j+1],type="l",col=2,lty=3,lwd=2)
points(yF$t[1:966],yF[1:966,j+1],type="l",col=2,lwd=2)
points(yF1$t,yF1[,j+1],type="l",lty=3,lwd=2)
points(yF1$t[1:644],yF1[1:644,j+1],type="l", lwd=2)
points(2.1,yF[966,j+1],pch=4,cex=1.6)
points(c(2.1,2.1),c(yF[966,j+1],yF1[966,j+1]),type="l",col=2,lwd=2)
points(2.1,yF1[966,j+1],cex=1.4)
legend( "topleft", bty="n",gp1Labs[j],cex=1.3)
if (j==3) legend("bottomleft",inset=c(0.01,0.01),bg="ivory",leg=c("Forecast","Prediction"),pch=c(1,4),cex=1.2)

}
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This graph appears when the program is executed. Blue vertical lines denote 
errors between predictions from fitting 3-knot splines to known outcomes and 
forecasts from extending 3-knot splines to data observed 7 years earlier.

Assuming data are 
homogeneous, the 
errors can now be 
used to create 
empirical bounds 
for future forecasts 
a further 7 years 
ahead after fitting a 
3-knot spline model 
to data for the 14-
year period from 
2008 to 2021.
This is our next 
task.
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In this session we continued applying basic data analytic methods to 
samples of daytime land surface temperature remote sensing data reported 
from Earth-orbiting satellites from March 2000 to February 2021. 
We focused on using a 3-knot natural cubic spline to fit daytime land surface 
temperature trends and to provide forecasts of future patterns up to 7 years 
ahead. We did this by using data 7 years earlier to predict the most recent 7 
years and thus provide forecasting error bounds.
And we used computer functions to package analysis programs that simplify 
visual presentation of results.
These methods require extensive further assessment and improvement 
using global climate data available from NASA.
Please email me at don.mcneil@mq.edu.au if you’d like to work with us on 
this research topic.

Thank you for your patience. Hope to see you again before too long!

NASA Data Take-Home Message

mailto:don.mcneil@mq.edu.au
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